On varieties of biresiduation algebras

Studia Logica 83 (1-3):425-445 (2006)
Abstract
A biresiduation algebra is a 〈/,\,1〉-subreduct of an integral residuated lattice. These algebras arise as algebraic models of the implicational fragment of the Full Lambek Calculus with weakening. We axiomatize the quasi-variety B of biresiduation algebras using a construction for integral residuated lattices. We define a filter of a biresiduation algebra and show that the lattice of filters is isomorphic to the lattice of B-congruences and that these lattices are distributive. We give a finite basis of terms for generating filters and use this to characterize the subvarieties of B with EDPC and also the discriminator varieties. A variety generated by a finite biresiduation algebra is shown to be a subvariety of B. The lattice of subvarieties of B is investigated; we show that there are precisely three finitely generated covers of the atom.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,074
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #186,176 of 1,101,579 )

Recent downloads (6 months)

6 ( #44,913 of 1,101,579 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.