Learning causal relationships

Abstract
How ought we learn causal relationships? While Popper advocated a hypothetico-deductive logic of causal discovery, inductive accounts are currently in vogue. Many inductive approaches depend on the causal Markov condition as a fundamental assumption. This condition, I maintain, is not universally valid, though it is justifiable as a default assumption. In which case the results of the inductive causal learning procedure must be tested before they can be accepted. This yields a synthesis of the hypothetico-deductive and inductive accounts, which forms the focus of this paper. I discuss the justification of this synthesis and draw an analogy between objective Bayesianism and the account of causal learning presented here.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,084
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

18 ( #98,445 of 1,101,905 )

Recent downloads (6 months)

7 ( #41,658 of 1,101,905 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.