Review of M. Giaquinto's Visual thinking in mathematics [Book Review]

Analysis 69 (2):401-403 (2009)
Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimal calculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this “crisis” as follows: Mathematicians had for a long time made use of supposedly geometric evidence as a means of proof in much too naive and much too uncritical a way, till the unclarities and mistakes that arose as a result forced a turnabout. Geometrical intuition was now declared to be inadmissible as a means of proof... (p. 67) Avoiding geometrical evidence, Hahn continued, mathematicians aware of this crisis pursued what he called “logicization”, “when the discipline requires nothing but purely logical fundamental concepts and propositions for its development.” On this view, an epistemically ideal mathematics would minimize, or avoid altogether, appeals to visual representations. This would be a radical reformation of past practice, necessary, according to its advocates, for avoiding “unclarities and mistakes” like the one exposed by Peano.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 29,308
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
29 ( #179,851 of 2,180,176 )

Recent downloads (6 months)
1 ( #303,869 of 2,180,176 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums