About this topic
Summary

Visualization in mathematics comes in many different varieties.  It is often connected with 1) the use of spatiotemporal intuition and 2) the use of diagrams and illustrations in mathematics.  Traditionally, visualization has been associated with geometry.  Euclid’s Elements includes diagrams of figures and geometrical constructions.  Understanding what role these diagrams played in Euclid’s proofs has been the focus of extensive researches.  Visualization is, however, not limited to the realm of geometry and nowadays enters different mathematical domains, such as abstract algebra, logic, and category theory.  Philosophical issues relating to visualization range from traditional debates about the a priori nature of mathematical knowledge to questions about the reliability of proofs involving diagrams. While according to the received view in philosophy of mathematics, diagrams are merely heuristic devices, recent literature challenges such view.  Other questions concern the cognitive abilities at play when engaging in mathematical visualization and the relation between visualization and mathematical understanding. 

Key works A monograph on visualization in mathematics is Giaquinto 2007.  A relevant edited collection is Mancosu et al 2005.  The relation between visualization and intuition is explored in Bråting & Pejlare 2008, and Giardino 2010Friedman 2000 focuses on intuition and geometry in the Kantian tradition.  For an analysis of diagrams in Euclidean geometry, see Netz 1999, Manders 2008, Macbeth 2010Mumma 2010, and Panza 2012. For a monograph on Peirce's logical diagrams see Shin 2002.  Article focusing on diagrams in contemporary mathematics are, for example, Carter 2010, Feferman 2012, and de Toffoli 2017.  The relationship between visualization in mathematics and cognitive science is investigated in Giardino 2018
Introductions Giaquinto 2008 and Mancosu 2005.  For a discussion focused on mathematical diagrams see Mumma & Panza 2012.
Related categories

74 found
Order:
1 — 50 / 74
  1. Self-Graphing Equations.Samuel Alexander - manuscript
    Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper’s self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on fonts) and it is trivial. We fix these flaws by formalizing the problem.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Reconciling Rigor and Intuition.Silvia De Toffoli - forthcoming - Erkenntnis:1-20.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. “Always Mixed Together”: Notation, Language, and the Pedagogy of Frege's Begriffsschrift.David E. Dunning - 2020 - Modern Intellectual History 17 (4):1099-1131.
    Gottlob Frege is considered a founder of analytic philosophy and mathematical logic, but the traditions that claim Frege as a forebear never embraced his Begriffsschrift, or “conceptual notation”—the invention he considered his most important accomplishment. Frege believed that his notation rendered logic visually observable. Rejecting the linearity of written language, he claimed Begriffsschrift exhibited a structure endogenous to logic itself. But Frege struggled to convince others to use his notation, as his frustrated pedagogical efforts at the University of Jena illustrate. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. Cognitive Processing of Spatial Relations in Euclidean Diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5. A Fresh Look at Research Strategies in Computational Cognitive Science: The Case of Enculturated Mathematical Problem Solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6. A Priori Concepts in Euclidean Proof.Peter Fisher Epstein - 2018 - Proceedings of the Aristotelian Society 118 (3):407-417.
    With the discovery of consistent non-Euclidean geometries, the a priori status of Euclidean proof was radically undermined. In response, philosophers proposed two revisionary interpretations of the practice: some argued that Euclidean proof is a purely formal system of deductive logic; others suggested that Euclidean reasoning is empirical, employing concepts derived from experience. I argue that both interpretations fail to capture the true nature of our geometrical thought. Euclidean proof is not a system of pure logic, but one in which our (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. The Epistemology of Mathematical Necessity.Cathy Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Berlin: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we might (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  8. Tools of Reason: The Practice of Scientific Diagramming From Antiquity to the Present.Greg Priest, Silvia De Toffoli & Paula Findlen - 2018 - Endeavour 42 (2-3):49-59.
  9. A Diagrammatic Representation for Entities and Mereotopological Relations in Ontologies.José M. Parente de Oliveira & Barry Smith - 2017 - In CEUR, vol. 1908.
    In the graphical representation of ontologies, it is customary to use graph theory as the representational background. We claim here that the standard graph-based approach has a number of limitations. We focus here on a problem in the graph-based representation of ontologies in complex domains such as biomedical, engineering and manufacturing: lack of mereotopological representation. Based on such limitation, we proposed a diagrammatic way to represent an entity’s structure and various forms of mereotopological relationships between the entities.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10. ‘Chasing’ the Diagram—the Use of Visualizations in Algebraic Reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  11. On the Norms of Visual Argument: A Case for Normative Non-Revisionism.David Godden - 2017 - Argumentation 31 (2):395-431.
    Visual arguments can seem to require unique, autonomous evaluative norms, since their content seems irreducible to, and incommensurable with, that of verbal arguments. Yet, assertions of the ineffability of the visual, or of visual-verbal incommensurability, seem to preclude counting putatively irreducible visual content as functioning argumentatively. By distinguishing two notions of content, informational and argumentative, I contend that arguments differing in informational content can have equivalent argumentative content, allowing the same argumentative norms to be rightly applied in their evaluation.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  12. From Euclidean Geometry to Knots and Nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3).
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive or (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  14. The Psychology and Philosophy of Natural Numbers.Oliver R. Marshall - 2017 - Philosophia Mathematica (1):nkx002.
    ABSTRACT I argue against both neuropsychological and cognitive accounts of our grasp of numbers. I show that despite the points of divergence between these two accounts, they face analogous problems. Both presuppose too much about what they purport to explain to be informative, and also characterize our grasp of numbers in a way that is absurd in the light of what we already know from the point of view of mathematical practice. Then I offer a positive methodological proposal about the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. Universal Intuitions of Spatial Relations in Elementary Geometry.Ineke J. M. Van der Ham, Yacin Hamami & John Mumma - 2017 - Journal of Cognitive Psychology 29 (3):269-278.
    Spatial relations are central to geometrical thinking. With respect to the classical elementary geometry of Euclid’s Elements, a distinction between co-exact, or qualitative, and exact, or metric, spatial relations has recently been advanced as fundamental. We tested the universality of intuitions of these relations in a group of Senegalese and Dutch participants. Participants performed an odd-one-out task with stimuli that in all but one case display a particular spatial relation between geometric objects. As the exact/co-exact distinction is closely related to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  16. Diagrams of the Past: How Timelines Can Aid the Growth of Historical Knowledge.Marc Champagne - 2016 - Cognitive Semiotics 9 (1):11-44.
    Historians occasionally use timelines, but many seem to regard such signs merely as ways of visually summarizing results that are presumably better expressed in prose. Challenging this language-centered view, I suggest that timelines might assist the generation of novel historical insights. To show this, I begin by looking at studies confirming the cognitive benefits of diagrams like timelines. I then try to survey the remarkable diversity of timelines by analyzing actual examples. Finally, having conveyed this (mostly untapped) potential, I argue (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014. Zurich, Switzerland: Birkhäuser. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. What Diagrams Argue in Late Imperial Chinese Combinatorial Texts.Andrea Bréard - 2015 - Early Science and Medicine 20 (3):241-264.
    Attitudes towards diagrammatic reasoning and visualization in mathematics were seldom spelled out in texts from pre-modern China, although illustrations figure prominently in mathematical literature since the eleventh century. Taking the sums of finite series and their combinatorial interpretation as a case study, this article investigates the epistemological function of illustrations from the eleventh to the nineteenth century that encode either the mathematical objects themselves or represent their related algorithms. It particularly focuses on the two illustrations given in Wang Lai’s Mathematical (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  19. An Inquiry Into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2015 - In Gabriele Lolli, Giorgio Venturi & Marco Panza (eds.), From Logic to Practice. Zurich, Switzerland: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  20. Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  21. A Perceptual Account of Symbolic Reasoning.David Landy, Colin Allen & Carlos Zednik - 2014 - Frontiers in Psychology 5.
    People can be taught to manipulate symbols according to formal mathematical and logical rules. Cognitive scientists have traditionally viewed this capacity—the capacity for symbolic reasoning—as grounded in the ability to internally represent numbers, logical relationships, and mathematical rules in an abstract, amodal fashion. We present an alternative view, portraying symbolic reasoning as a special kind of embodied reasoning in which arithmetic and logical formulae, externally represented as notations, serve as targets for powerful perceptual and sensorimotor systems. Although symbolic reasoning often (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  22. “Things Unreasonably Compulsory”: A Peircean Challenge to a Humean Theory of Perception, Particularly With Respect to Perceiving Necessary Truths.Catherine Legg - 2014 - Cognitio 15 (1):89-112.
    Much mainstream analytic epistemology is built around a sceptical treatment of modality which descends from Hume. The roots of this scepticism are argued to lie in Hume’s (nominalist) theory of perception, which is excavated, studied and compared with the very different (realist) theory of perception developed by Peirce. It is argued that Peirce’s theory not only enables a considerably more nuanced and effective epistemology, it also (unlike Hume’s theory) does justice to what happens when we appreciate a proof in mathematics.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. On the Status and Role of Instrumental Images in Contemporary Science: Some Epistemological Issues.Hermínio Martins - 2014 - Scientiae Studia 12 (SPE):11-36.
    The controversy over imageless thought versus picture thinking , with the recent reconsideration of model-based reasoning in the physical sciences is briefly examined. The main focus of the article is on the role of instrumentally elicited images in the sciences, especially in the physical sciences, with special reference to optics, experimental particle physics and observational astronomy, against the background of the civilization of digital images, though to some degree every scientific discipline is implicated. Imaging, today chiefly in the mode of (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24. The Advantages of Bringing Infinity to a Finite Place: Penrose Diagrams as Objects of Intuition.Aaron Sidney Wright - 2014 - Historical Studies in the Natural Sciences 44 (2):99-139.
  25. Prolegomena to a Cognitive Investigation of Euclidean Diagrammatic Reasoning.Yacin Hamami & John Mumma - 2013 - Journal of Logic, Language and Information 22 (4):421-448.
    Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26. What is a Logical Diagram?Catherine Legg - 2013 - In Sun-Joo Shin & Amirouche Moktefi (eds.), Visual Reasoning with Diagrams. Springer. pp. 1-18.
    Robert Brandom’s expressivism argues that not all semantic content may be made fully explicit. This view connects in interesting ways with recent movements in philosophy of mathematics and logic (e.g. Brown, Shin, Giaquinto) to take diagrams seriously - as more than a mere “heuristic aid” to proof, but either proofs themselves, or irreducible components of such. However what exactly is a diagram in logic? Does this constitute a semiotic natural kind? The paper will argue that such a natural kind does (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   7 citations  
  27. The Motion Behind the Symbols: A Vital Role for Dynamism in the Conceptualization of Limits and Continuity in Expert Mathematics.Tyler Marghetis & Rafael Núñez - 2013 - Topics in Cognitive Science 5 (2):299-316.
    The canonical history of mathematics suggests that the late 19th-century “arithmetization” of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  28. Visual Reasoning with Diagrams.Sun-Joo Shin & Amirouche Moktefi (eds.) - 2013 - Basel: Birkhaüser.
  29. Figures, Formulae, and Functors.Zach Weber - 2013 - In Sun-Joo Shin & Amirouche Moktefi (eds.), Visual Reasoning with Diagrams. Springer. pp. 153--170.
    This article suggests a novel way to advance a current debate in the philosophy of mathematics. The debate concerns the role of diagrams and visual reasoning in proofs—which I take to concern the criteria of legitimate representation of mathematical thought. Drawing on the so-called ‘maverick’ approach to philosophy of mathematics, I turn to mathematical practice itself to adjudicate in this debate, and in particular to category theory, because there (a) diagrams obviously play a major role, and (b) category theory itself (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  30. To Diagram, to Demonstrate: To Do, To See, and To Judge in Greek Geometry.Philip Catton & Cemency Montelle - 2012 - Philosophia Mathematica 20 (1):25-57.
    Not simply set out in accompaniment of the Greek geometrical text, the diagram also is coaxed into existence manually (using straightedge and compasses) by commands in the text. The marks that a diligent reader thus sequentially produces typically sum, however, to a figure more complex than the provided one and also not (as it is) artful for being synoptically instructive. To provide a figure artfully is to balance multiple desiderata, interlocking the timelessness of insight with the temporality of construction. Our (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  31. Hume on Space, Geometry, and Diagrammatic Reasoning.Graciela De Pierris - 2012 - Synthese 186 (1):169-189.
    Hume’s discussion of space, time, and mathematics at T 1.2 appeared to many earlier commentators as one of the weakest parts of his philosophy. From the point of view of pure mathematics, for example, Hume’s assumptions about the infinite may appear as crude misunderstandings of the continuum and infinite divisibility. I shall argue, on the contrary, that Hume’s views on this topic are deeply connected with his radically empiricist reliance on phenomenologically given sensory images. He insightfully shows that, working within (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  32. And so On...: Reasoning with Infinite Diagrams.Solomon Feferman - 2012 - Synthese 186 (1):371 - 386.
    This paper presents examples of infinite diagrams (as well as infinite limits of finite diagrams) whose use is more or less essential for understanding and accepting various proofs in higher mathematics. The significance of these is discussed with respect to the thesis that every proof can be formalized, and a "pre" form of this thesis that every proof can be presented in everyday statements-only form.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  33. Review of M. Giaquinto, Visual Thinking in Mathematics: An Epistemological Study[REVIEW]Valeria Giardino - 2012 - Review of Metaphysics 66 (1):148-150.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  34. Pictures and Pedagogy: The Role of Diagrams in Feynman's Early Lectures.Ari Gross - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (3):184-194.
    This paper aims to give a substantive account of how Feynman used diagrams in the first lectures in which he explained his new approach to quantum electrodynamics. By critically examining unpublished lecture notes, Feynman’s use and interpretation of both "Feynman diagrams" and other visual representations will be illuminated. This paper discusses how the morphology of Feynman’s early diagrams were determined by both highly contextual issues, which molded his images to local needs and particular physical characterizations, and an overarching common diagrammatic (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Diagrams as Sketches.Brice Halimi - 2012 - Synthese 186 (1):387-409.
    This article puts forward the notion of “evolving diagram” as an important case of mathematical diagram. An evolving diagram combines, through a dynamic graphical enrichment, the representation of an object and the representation of a piece of reasoning based on the representation of that object. Evolving diagrams can be illustrated in particular with category-theoretic diagrams (hereafter “diagrams*”) in the context of “sketch theory,” a branch of modern category theory. It is argued that sketch theory provides a diagrammatic* theory of diagrams*, (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. The Hardness of the Iconic Must: Can Peirce’s Existential Graphs Assist Modal Epistemology.C. Legg - 2012 - Philosophia Mathematica 20 (1):1-24.
    Charles Peirce's diagrammatic logic — the Existential Graphs — is presented as a tool for illuminating how we know necessity, in answer to Benacerraf's famous challenge that most ‘semantics for mathematics’ do not ‘fit an acceptable epistemology’. It is suggested that necessary reasoning is in essence a recognition that a certain structure has the particular structure that it has. This means that, contra Hume and his contemporary heirs, necessity is observable. One just needs to pay attention, not merely to individual (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  37. Diagrams in Mathematics: History and Philosophy.John Mumma & Marco Panza - 2012 - Synthese 186 (1):1-5.
    Diagrams are ubiquitous in mathematics. From the most elementary class to the most advanced seminar, in both introductory textbooks and professional journals, diagrams are present, to introduce concepts, increase understanding, and prove results. They thus fulfill a variety of important roles in mathematical practice. Long overlooked by philosophers focused on foundational and ontological issues, these roles have come to receive attention in the past two decades, a trend in line with the growing philosophical interest in actual mathematical practice.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  38. The Twofold Role of Diagrams in Euclid’s Plane Geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  39. Crossing Curves: A Limit to the Use of Diagrams in Proofs†: Articles.Marcus Giaquinto - 2011 - Philosophia Mathematica 19 (3):281-307.
    This paper investigates the following question: when can one reliably infer the existence of an intersection point from a diagram presenting crossing curves or lines? Two cases are considered, one from Euclid's geometry and the other from basic real analysis. I argue for the acceptability of such an inference in the geometric case but against in the analytic case. Though this question is somewhat specific, the investigation is intended to contribute to the more general question of the extent and limits (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Diagrams and Proofs in Analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  41. Content Aggregation, Visualization and Emergent Properties in Computer Simulations.Gordana Dodig-Crnkovic, Juan M. Durán & D. Slutej - 2010 - In Kai-Mikael Jää-Aro & Thomas Larsson (eds.), SIGRAD 2010 – Content aggregation and visualization. Linköping University Electronic Press. pp. 77-83.
    With the rapidly growing amounts of information, visualization is becoming increasingly important, as it allows users to easily explore and understand large amounts of information. However the field of information visualiza- tion currently lacks sufficient theoretical foundations. This article addresses foundational questions connecting information visualization with computing and philosophy studies. The idea of multiscale information granula- tion is described based on two fundamental concepts: information (structure) and computation (process). A new information processing paradigm of Granular Computing enables stepwise increase of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  42. Proofs, Pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  43. Review of M. Giaquinto's Visual Thinking in Mathematics. [REVIEW]Andrew Arana - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimal calculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this “crisis” as (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  44. Visual Thinking in Mathematics • by Marcus Giaquinto.Andrew Arana - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late 19th century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis received much attention in the 19th century. They helped to instigate what Hans Hahn called a ‘crisis of intuition’, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this ‘crisis’ as follows : " Mathematicians had for (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  45. On the Persuasiveness of Visual Arguments in Mathematics.Matthew Inglis & Juan Pablo Mejía-Ramos - 2009 - Foundations of Science 14 (1-2):97-110.
    Two experiments are reported which investigate the factors that influence how persuaded mathematicians are by visual arguments. We demonstrate that if a visual argument is accompanied by a passage of text which describes the image, both research-active mathematicians and successful undergraduate mathematics students perceive it to be significantly more persuasive than if no text is given. We suggest that mathematicians’ epistemological concerns about supporting a claim using visual images are less prominent when the image is described in words. Finally we (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Visualizations in Mathematics.Kajsa Bråting & Johanna Pejlare - 2008 - Erkenntnis 68 (3):345 - 358.
    In this paper we discuss visualizations in mathematics from a historical and didactical perspective. We consider historical debates from the 17th and 19th centuries regarding the role of intuition and visualizations in mathematics. We also consider the problem of what a visualization in mathematical learning can achieve. In an empirical study we investigate what mathematical conclusions university students made on the basis of a visualization. We emphasize that a visualization in mathematics should always be considered in its proper context.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Proof: Its Nature and Significance.Michael Detlefsen - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 1.
    I focus on three preoccupations of recent writings on proof. -/- I. The role and possible effects of empirical reasoning in mathematics. Do recent developments (specifically, the computer-assisted proof of the 4CT) point to something essentially new as regards the need for and/or effects of using broadly empirical and inductive reasoning in mathematics? In particular, should we see such things as the computer-assisted proof of the 4CT as pointing to the existence of mathematical truths of which we cannot have a (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Visualizing in Mathematics.Marcus Giaquinto - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 22-42.
    Visual thinking in mathematics is widespread; it also has diverse kinds and uses. Which of these uses is legitimate? What epistemic roles, if any, can visualization play in mathematics? These are the central philosophical questions in this area. In this introduction I aim to show that visual thinking does have epistemically significant uses. The discussion focuses mainly on visual thinking in proof and discovery and touches lightly on its role in understanding.
    Remove from this list  
     
    Export citation  
     
    Bookmark   5 citations  
  49. The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   69 citations  
  50. Nathaniel Miller. Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry. Csli Studies in the Theory and Applications of Diagrams.John Mumma - 2008 - Philosophia Mathematica 16 (2):256-264.
    It is commonplace to view the rigor of the mathematics in Euclid's Elements in the way an experienced teacher views the work of an earnest beginner: respectable relative to an early stage of development, but ultimately flawed. Given the close connection in content between Euclid's Elements and high-school geometry classes, this is understandable. Euclid, it seems, never realized what everyone who moves beyond elementary geometry into more advanced mathematics is now customarily taught: a fully rigorous proof cannot rely on geometric (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 74