Authors
Leon Horsten
Universität Konstanz
Abstract
Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP _3.4_ Infinite sums _3.5_ Definition of NAP functions via infinite sums _3.6_ Relation to numerosity theory _4_ Objections and Replies _4.1_ Cantor and the Archimedean property _4.2_ Ticket missing from an infinite lottery _4.3_ Williamson’s infinite sequence of coin tosses _4.4_ Point sets on a circle _4.5_ Easwaran and Pruss _5_ Dividends _5.1_ Measure and utility _5.2_ Regularity and uniformity _5.3_ Credence and chance _5.4_ Conditional probability _6_ General Considerations _6.1_ Non-uniqueness _6.2_ Invariance Appendix
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Reprint years 2018, 2019
DOI 10.1093/bjps/axw013
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 65,784
Through your library

References found in this work BETA

Laws and Symmetry.Bas C. van Fraassen - 1989 - Oxford, England: Oxford University Press.
A Subjectivist’s Guide to Objective Chance.David K. Lewis - 1980 - In Richard C. Jeffrey (ed.), Studies in Inductive Logic and Probability, Volume II. Berkeley: University of California Press. pp. 263-293.
Laws and Symmetry.Bas C. van Fraassen - 1989 - Revue Philosophique de la France Et de l'Etranger 182 (3):327-329.
What Conditional Probability Could Not Be.Alan Hájek - 2003 - Synthese 137 (3):273--323.

View all 42 references / Add more references

Citations of this work BETA

Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2020 - Philosophy and Phenomenological Research 100 (1):54-74.
Conditional Probabilities.Kenny Easwaran - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 131-198.
Precise Credences.Michael Titelbaum - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPaper Foundation. pp. 1-55.
Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.

View all 24 citations / Add more citations

Similar books and articles

Non-Archimedean Probability.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2013 - Milan Journal of Mathematics 81 (1):121-151.
Infinite Lotteries, Perfectly Thin Darts and Infinitesimals.Alexander R. Pruss - 2012 - Thought: A Journal of Philosophy 1 (2):81-89.
A Consistent Set of Infinite-Order Probabilities.David Atkinson & Jeanne Peijnenburg - 2013 - International Journal of Approximate Reasoning 54:1351-1360.
Probability and Conditionals.Robert C. Stalnaker - 1970 - Philosophy of Science 37 (1):64-80.
Declarations of Independence.Branden Fitelson & Alan Hájek - 2017 - Synthese 194 (10):3979-3995.
Lagrange Lecture: Methodology of Numerical Computations with Infinities and Infinitesimals.Yaroslav Sergeyev - 2010 - Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.
Indeterminacy of Fair Infinite Lotteries.Philip Kremer - 2014 - Synthese 191 (8):1757-1760.

Analytics

Added to PP index
2016-08-13

Total views
87 ( #127,527 of 2,462,967 )

Recent downloads (6 months)
10 ( #71,077 of 2,462,967 )

How can I increase my downloads?

Downloads

My notes