On the C.E. Degrees Realizable in Classes

Journal of Symbolic Logic:1-26 (forthcoming)
  Copy   BIBTEX

Abstract

We study for each computably bounded $\Pi ^0_1$ class P the set of degrees of c.e. paths in P. We show, amongst other results, that for every c.e. degree a there is a perfect $\Pi ^0_1$ class where all c.e. members have degree a. We also show that every $\Pi ^0_1$ set of c.e. indices is realized in some perfect $\Pi ^0_1$ class, and classify the sets of c.e. degrees which can be realized in some $\Pi ^0_1$ class as exactly those with a computable representation.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,296

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2024-04-03

Downloads
46 (#355,984)

6 months
46 (#95,336)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Countable thin Π01 classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.

Add more references