6 found
Order:
  1.  45
    Lowness and Π₂⁰ Nullsets.Rod Downey, Andre Nies, Rebecca Weber & Liang Yu - 2006 - Journal of Symbolic Logic 71 (3):1044-1052.
    We prove that there exists a noncomputable c.e. real which is low for weak 2-randomness, a definition of randomness due to Kurtz, and that all reals which are low for weak 2-randomness are low for Martin-Löf randomness.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  2.  24
    Totally Ω-Computably Enumerable Degrees and Bounding Critical Triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
  3.  9
    Algorithmic Randomness of Continuous Functions.George Barmpalias, Paul Brodhead, Douglas Cenzer, Jeffrey B. Remmel & Rebecca Weber - 2008 - Archive for Mathematical Logic 46 (7-8):533-546.
    We investigate notions of randomness in the space ${{\mathcal C}(2^{\mathbb N})}$ of continuous functions on ${2^{\mathbb N}}$ . A probability measure is given and a version of the Martin-Löf test for randomness is defined. Random ${\Delta^0_2}$ continuous functions exist, but no computable function can be random and no random function can map a computable real to a computable real. The image of a random continuous function is always a perfect set and hence uncountable. For any ${y \in 2^{\mathbb N}}$ , (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  4.  5
    Preface.Douglas Cenzer & Rebecca Weber - 2008 - Archive for Mathematical Logic 46 (7-8):529-531.
  5.  1
    Degree Invariance in the Π 0 1 Classes.Rebecca Weber - 2011 - Journal of Symbolic Logic 76 (4):1184-1210.
    Let ℰΠ denote the collection of all Π01 classes, ordered by inclusion. A collection of Turing degrees.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  6. Lowness for Effective Hausdorff Dimension.Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Daniel D. Turetsky & Rebecca Weber - 2014 - Journal of Mathematical Logic 14 (2):1450011.