Algebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices
Mathematical Logic Quarterly 54 (2):153-166 (2008)
Abstract
We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [3] but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given.We also make an algebraic study of the equivalent algebraic semantics of the logics associated to the matrices ℳ32,2, ℳ32,1, ℳ31,1, ℳ31,3, and ℳ4 appearing in [11] proving that they are not varieties and finding the free algebra over one generatorDOI
10.1002/malq.200710021
My notes
Similar books and articles
Literal‐paraconsistent and literal‐paracomplete matrices.Renato A. Lewin & Irene F. Mikenberg - 2006 - Mathematical Logic Quarterly 52 (5):478-493.
First order theory for literal‐paraconsistent and literal‐paracomplete matrices.Renato A. Lewin & Irene F. Mikenberg - 2010 - Mathematical Logic Quarterly 56 (4):425-433.
Maximal and Premaximal Paraconsistency in the Framework of Three-Valued Semantics.Ofer Arieli, Arnon Avron & Anna Zamansky - 2011 - Studia Logica 97 (1):31 - 60.
Abstract Valuation Semantics.Carlos Caleiro & Ricardo Gonçalves - 2013 - Studia Logica 101 (4):677-712.
Modal Extensions of Sub-classical Logics for Recovering Classical Logic.Marcelo E. Coniglio & Newton M. Peron - 2013 - Logica Universalis 7 (1):71-86.
Algebras and matrices for annotated logics.R. A. Lewin, I. F. Mikenberg & M. G. Schwarze - 2000 - Studia Logica 65 (1):137-153.
Nearly every normal modal logic is paranormal.Joao Marcos - 2005 - Logique Et Analyse 48 (189-192):279-300.
Strong paraconsistency and the basic constructive logic for an even weaker sense of consistency.Gemma Robles & José M. Méndez - 2009 - Journal of Logic, Language and Information 18 (3):357-402.
A Routley–Meyer Semantics for Gödel 3-Valued Logic and Its Paraconsistent Counterpart.Gemma Robles - 2013 - Logica Universalis 7 (4):507-532.
Paranormal modal logic – Part II: K?, K and Classical Logic and other paranormal modal systems.R. Silvestre - 2013 - Logic and Logical Philosophy 22 (1):89-130.
Implicit connectives of algebraizable logics.Xavier Caicedo - 2004 - Studia Logica 78 (1-2):155 - 170.
Paranormal modal logic–Part I: The system K? and the foundations of the Logic of skeptical and credulous plausibility.Ricardo S. Silvestre - 2012 - Logic and Logical Philosophy 21 (1):65-96.
Dual Equivalent Two-valued Under-determined and Over-determined Interpretations for Łukasiewicz's 3-valued Logic Ł3.Gemma Robles, Francisco Salto & José M. Méndez - 2013 - Journal of Philosophical Logic (2-3):1-30.
Analytics
Added to PP
2013-12-01
Downloads
26 (#449,328)
6 months
1 (#451,398)
2013-12-01
Downloads
26 (#449,328)
6 months
1 (#451,398)
Historical graph of downloads
Citations of this work
First order theory for literal‐paraconsistent and literal‐paracomplete matrices.Renato A. Lewin & Irene F. Mikenberg - 2010 - Mathematical Logic Quarterly 56 (4):425-433.
References found in this work
Maximal weakly-intuitionistic logics.A. M. Sette & Walter A. Carnielli - 1995 - Studia Logica 55 (1):181 - 203.
Algebraic study of Sette's maximal paraconsistent logic.Alexej P. Pynko - 1995 - Studia Logica 54 (1):89 - 128.
On the algebraizability of annotated logics.Renato A. Lewin, Irene F. Mikenberg & María G. Schwarze - 1997 - Studia Logica 59 (3):359-386.
Algebraizability and Beth's Theorem for equivalential logics.Burghard Herrmann - 1993 - Bulletin of the Section of Logic 22:85-88.