Processes controlling δ 7 Li in rivers illuminated by study of streams and groundwaters draining basalts

Abstract

© 2014 Elsevier B.V.We evaluate the factors influencing the abundance, [Li], and isotopic composition of riverine Li delivered to the oceans through analyses and modeling of [Li] and δ7Li in streams and groundwaters draining a single continental lithology, the Columbia River Basalts. The streams were sampled in different climate zones that lie east, and west of the Cascades Mountains, and during two different seasons in order to evaluate climatic and seasonal influences on Li isotopes in rivers. Dissolved Li is systematically heavier than that of fresh or weathered CRBs, suspended loads, and shallow groundwaters, consistent with previous studies showing that Li isotope fractionation is affected by equilibration between stream water and secondary minerals. However, the lack of correlation between δ7Lidis and climate zone, the uniform secondary minerals and bedrock, coupled with the highly variable δLidis7 indicate that other factors exert a strong control on δ7Lidis. In particular, the heavier Li in streams compared to the shallow groundwaters that feed them indicates that continued isotopic fractionation between stream water and suspended and/or bed loads has a major influence on riverine δ7Li. Seasonal δ7Li variation is observed only for streams west of the Cascades, where the difference in precipitation rate between the dry and wet seasons is greatest. Reactive transport model simulations reveal that riverine δ7Li is strongly controlled by subsurface residence times and the Li isotope fractionation occurring within rivers. The latter explains why there is no positive correlation between δ7Li and traditional weathering proxies such as Si or normalized Si in rivers, as riverine Li isotope fractionation drives δ7Li to higher values during transport, whereas the concentrations of major cations and anions are diluted. The varying residence time for groundwaters feeding the western streams in summer and winter explains the observed seasonal variations. A global, negative correlation between δ7Li and Li/Na for streams and rivers draining basaltic catchments reflects the overall transport time, hence the amount of silicate weathering. Based on our results, the increase of δ7Li in seawater during the Cenozoic is unlikely related to changing climate, but may reflect mountain building giving rise to increased silicate weathering.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-03-18

Downloads
4 (#1,013,551)

6 months
1 (#1,912,481)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Curt Wanner
Toccoa Falls College
Xiaofei Liu
Wuhan University
Xin Liu
Dalian University of Technology

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references