Abstract
Light Linear Logic (LLL) and Intuitionistic Light Affine Logic (ILAL) are logics that capture polynomial time computation. It is known that every polynomial time function can be represented by a proof of these logics via the proofs-as-programs correspondence. Furthermore, there is a reduction strategy which normalizes a given proof in polynomial time. Given the latter polynomial time “weak” normalization theorem, it is natural to ask whether a “strong” form of polynomial time normalization theorem holds or not. In this paper, we introduce an untyped term calculus, called Light Affine Lambda Calculus (λLA), which corresponds to ILAL. λLA is a bi-modal λ-calculus with certain constraints, endowed with very simple reduction rules. The main property of LALC is the polynomial time strong normalization: any reduction strategy normalizes a given λLA term in a polynomial number of reduction steps, and indeed in polynomial time. Since proofs of ILAL are structurally representable by terms of λLA, we conclude that the same holds for ILAL