Idealization in applied first-order logic

Synthese 117 (3):331-354 (1998)
Abstract
Applying first-order logic to derive the consequences of laws that are only approximately true of empirical phenomena involves idealization of a kind that is akin to applying arithmetic to calculate the area of a rectangular surface from approximate measures of the lengths of its sides. Errors in the data, in the exactness of the lengths in one case and in the exactness of the laws in the other, are in some measure transmitted to the consequences deduced from them, and the aim of a theory of idealization is to describe this process. The present paper makes a start on this in the case of applied first-order logic, and relates it to Plato's picture of a world or model of 'appearances' in which laws are only approximately true, but which to some extent resembles an ideal world or model in which they are exactly true.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,819
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

16 ( #107,068 of 1,099,918 )

Recent downloads (6 months)

5 ( #67,010 of 1,099,918 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.