A generalization of the limit lemma and clopen games

Journal of Symbolic Logic 51 (2):273-291 (1986)
Abstract
We give a new characterization of the hyperarithmetic sets: a set X of integers is recursive in e α if and only if there is a Turing machine which computes X and "halts" in less than or equal to the ordinal number ω α of steps. This result represents a generalization of the well-known "limit lemma" due to J. R. Shoenfield [Sho-1] and later independently by H. Putnam [Pu] and independently by E. M. Gold [Go]. As an application of this result, we give a recursion theoretic analysis of clopen determinacy: there is a correlation given between the height α of a well-founded tree corresponding to a clopen game $A \subseteq \omega^\omega$ and the Turing degree of a winning strategy f for one of the players--roughly, f can be chosen to be recursive in 0 α and this is the best possible (see § 4 for precise results)
Keywords Limit lemma   clopen games   hyperarithmetic winning strategy   trees
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #398,768 of 1,096,439 )

Recent downloads (6 months)

1 ( #231,754 of 1,096,439 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.