Fractal images of formal systems

Journal of Philosophical Logic 26 (2):181-222 (1997)
Abstract
Formal systems are standardly envisaged in terms of a grammar specifying well-formed formulae together with a set of axioms and rules. Derivations are ordered lists of formulae each of which is either an axiom or is generated from earlier items on the list by means of the rules of the system; the theorems of a formal system are simply those formulae for which there are derivations. Here we outline a set of alternative and explicitly visual ways of envisaging and analyzing at least simple formal systems using fractal patterns of infinite depth. Progressively deeper dimensions of such a fractal can be used to map increasingly complex wffs or increasingly complex 'value spaces', with tautologies, contradictions, and various forms of contingency coded in terms of color. This and related approaches, it turns out, offer not only visually immediate and geometrically intriguing representations of formal systems as a whole but also promising formal links (1) between standard systems and classical patterns in fractal geometry, (2) between quite different kinds of value spaces in classical and infinite-valued logics, and (3) between cellular automata and logic. It is hoped that pattern analysis of this kind may open possibilities for a geometrical approach to further questions within logic and metalogic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

19 ( #89,058 of 1,101,690 )

Recent downloads (6 months)

6 ( #44,817 of 1,101,690 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.