On Infinite Number and Distance

Constructivist Foundations 7 (2):126-130 (2012)
Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that the infinite numbers should be as much like the finite numbers as possible. Results: Using finite numbers as our guide to the infinite numbers, it follows that infinite numbers are of the structure w + (w* + w) a + w*. This same structure also arises when a large finite number is under investigation. Implications: A first implication of the paper is that infinite numbers may be large finite numbers that have not been investigated fully. A second implication is that there is no number of finite numbers. Third, a number of paradoxes of the infinite are resolved. One change that should occur as a result of these findings is that “infinitely many” should refer to structures of the form w + (w* + w) a + w*; in contrast, there are “indefinitely many” natural numbers. Constructivist content: The constructivist perspective of the paper is a form of strict finitism
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive Jeremy Gwiazda, On Infinite Number and Distance
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

125 ( #20,828 of 1,726,249 )

Recent downloads (6 months)

23 ( #38,308 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.