Inquiry Teaching and Learning: Philosophical Considerations

In Michael R. Matthews (ed.), International Handbook of Research in History, Philosophy and Science Teaching. Springer. pp. 1363-1380 (2014)
  Copy   BIBTEX

Abstract

Inquiry teaching can be viewed as an approach for communicating the knowledge and practices of science to learners. In its various forms inquiry offers potential learning opportunities and poses constraints on what might be available to learn. Philosophical analysis offers ways of understanding inquiry, knowledge, and social practices. This chapter will examine philosophical problems that arise from teaching science as inquiry. Observation, experimentation, measurement, inference, explanation, and modeling pose challenges for novice learners who may not have the conceptual and epistemic knowledge to engage effectively in such scientific practices in inquiry settings. Science learning entails apprenticeship and socialization into a legacy of conceptual knowledge and epistemic practices (Kelly. Inquiry, Activity, and Epistemic Practice. In R. Duschl & R. Grandy (Eds.) Teaching Scientific Inquiry: Recommendations for Research and Implementation (pp. 99–117; 288–291). Rotterdam: Sense Publishers, 2008). Modern science increasingly relies on abstract and computational models that are not readily constructed from the student-driven questions that often function as an early step in inquiry approaches to instruction. Thus, engaging students in the epistemic practices of science poses challenges for educators. The argument developed in this chapter draws from an epistemological position that makes clear the need for building from extant disciplinary knowledge of a relevant social group in order to learn through inquiry. Establishing a social epistemology in educational settings provides opportunities for students to engage in ways of speaking, listening, and explaining that are part of constructing knowledge claims in science (Kelly and Chen. Journal of Research in Science Teaching 36, 883–915, 1999). This perspective on epistemology emphasizes the importance of dialectical processes in science learning. Thus, an inquiry-oriented pedagogy needs to attend to developing norms and practices in educational settings that provide opportunities to learn through and about inquiry. By considering the situated social group as the epistemic subject, inquiry teaching and learning can be viewed as creating opportunities for supporting the conceptual, epistemic, and social goals of science education (Duschl. Review of Research in Education, 32, 268–291, 2008; Kelly. Inquiry, Activity, and Epistemic Practice. In R. Duschl & R. Grandy (Eds.) Teaching Scientific Inquiry: Recommendations for Research and Implementation (pp. 99–117; 288–291). Rotterdam: Sense Publishers, 2008). The chapter addresses the philosophical considerations of inquiry in science education by identifying the epistemological constraints to teaching science as inquiry, reviewing the potential contributions of philosophy of science to discussions regarding inquiry, considering how social epistemology aligns with developments in psychology of learning with understandings about science, and offering ways that philosophical analysis can contribute to the on-going conversations regarding science education reform.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,829

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Back to the basics of teaching and learning: "thinking the world together".David William Jardine - 2003 - New York: Routledge. Edited by Patricia Clifford & Sharon Friesen.

Analytics

Added to PP
2014-12-14

Downloads
14 (#989,410)

6 months
9 (#307,343)

Historical graph of downloads
How can I increase my downloads?