Reconstructing Hilbert to construct category theoretic structuralism

Abstract
This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the “algebraic” approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a “foundation”, or turning meta-mathematical analyses of logical concepts into “philosophical” ones. Thus, we can use category theory to frame an interpretation of mathematics according to which we can be algebraic structuralists all the way down.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-09-02

Total downloads

47 ( #37,585 of 1,100,145 )

Recent downloads (6 months)

5 ( #66,996 of 1,100,145 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.