Abacus logic: The lattice of quantum propositions as the poset of a theory

Journal of Symbolic Logic 59 (2):501-515 (1994)
Abstract
With a certain graphic interpretation in mind, we say that a function whose value at every point in its domain is a nonempty set of real numbers is an Abacus. It is shown that to every collection C of abaci there corresponds a logic, called an abacus logic, i.e., a certain set of propositions partially ordered by generalized implication. It is also shown that to every collection C of abaci there corresponds a theory JC in a classical propositional calculus such that the abacus logic determined by C is isomorphic to the poset of JC. Two examples are given. In both examples abacus logic is a lattice in which there happens to be an operation of orthocomplementation. In the first example abacus logic turns out to be the Lindenbaum algebra of JC. In the second example abacus logic is a lattice isomorphic to the ortholattice of subspaces of a Hilbert space. Thus quantum logic can be regarded as an abacus logic. Without suggesting "hidden variables" it is finally shown that the Lindenbaum algebra of the theory in the second example is a subalgebra of the abacus logic B of the kind studied in example 1. It turns out that the "classical observables" associated with B and the "quantum observables" associated with quantum logic are not unrelated. The value of a classical observable contains, in coded form, information about the "uncertainty" of a quantum observable. This information is retrieved by decoding the value of the corresponding classical observable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,047
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

21 ( #86,368 of 1,101,746 )

Recent downloads (6 months)

18 ( #12,035 of 1,101,746 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.