Harmonising Natural Deduction

Synthese 163 (2):187 - 198 (2008)
Prawitz proved a theorem, formalising 'harmony' in Natural Deduction systems, which showed that, corresponding to any deduction there is one to the same effect but in which no formula occurrence is both the consequence of an application of an introduction rule and major premise of an application of the related elimination rule. As Gentzen ordered the rules, certain rules in Classical Logic had to be excepted, but if we see the appropriate rules instead as rules for Contradiction, then we can extend the theorem to the classical case. Properly arranged there is a thoroughgoing 'harmony', in the classical rules. Indeed, as we shall see, they are, all together, far more 'harmonious' in the general sense than has been commonly observed. As this paper will show, the appearance of disharmony has only arisen because of the illogical way in which natural deduction rules for Classical Logic have been presented
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    33 ( #44,430 of 1,089,156 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,156 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.