How can physics account for mathematical truth?

Abstract
If physicalism is true, everything is physical. In other words, everything supervenes on, or is necessitated by, the physical. Accordingly, if there are logical/mathematical facts, they must be necessitated by the physical facts of the world. In this paper, I will sketch the first steps of a physicalist philosophy of mathematics; that is, how physicalism can account for logical and mathematical facts. We will proceed as follows. First we will clarify what logical/mathematical facts actually are. Then, we will discuss how these facts can be accommodated in the physicalist ontology. This might sound like immanent realism (as in Mill, Armstrong, Kitcher, or Maddy), according to which the mathematical concepts and propositions reflect some fundamental features of the physical world. Although, in my final conclusion I will claim that mathematical and logical truths do have contingent content in a sophisticated sense, and they are about some peculiar part of the physical world, I reject the idea, as this thesis is usually understood, that mathematics is about the physical world in general. In fact, I reject the idea that mathematics is about anything. In contrast, the view I am proposing here will be based on the strongest formalist approach to mathematics.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,371
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-05-09

Total downloads

32 ( #55,329 of 1,102,834 )

Recent downloads (6 months)

2 ( #182,775 of 1,102,834 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.