Abstract
The common view of the transition between subitizing and numerosity estimation regimes is that there is a hard bound on the subitizing range, and beyond this range, people estimate. However, this view does not adequately address the behavioral signatures of enumeration under conditions of attentional load or in the immediate post-subitizing range. The possibility that there might exist a numerosity range where both processes of subitizing and estimation operate in conjunction has so far been ignored. Here, we investigate this new proposal, that people strategically combine the processes of subitizing and estimation to maximize accuracy and precision, given time or attentional constraints. We present a process-level account of how subitizing and estimation can be combined through strategic deployment of attention to maximize the precision of perceived numerosity given time constraints. We then describe a computational model of this account and apply it in two experimental simulations to demonstrate how it can explain key findings in prior enumeration research. While recent modeling work has argued that the behavioral signatures of enumeration can best be explained through a single numerosity system with a single form of representation, we argue that our model demonstrates how the traditional two-systems view of numerical representation accounts for behavioral data through coordination with a unified attentional mechanism, rather than a unified representation.