Deciphering the physical meaning of Gibbs’s maximum work equation

Foundations of Chemistry 26 (1):179-189 (2024)
  Copy   BIBTEX

Abstract

J. Willard Gibbs derived the following equation to quantify the maximum work possible for a chemical reaction$${\text{Maximum work }} = \, - \Delta {\text{G}}_{{{\text{rxn}}}} = \, - \left( {\Delta {\text{H}}_{{{\text{rxn}}}} {-}{\text{ T}}\Delta {\text{S}}_{{{\text{rxn}}}} } \right) {\text{ constant T}},{\text{P}}$$ Maximum work = - Δ G rxn = - Δ H rxn - T Δ S rxn constant T, P ∆Hrxn is the enthalpy change of reaction as measured in a reaction calorimeter and ∆Grxn the change in Gibbs energy as measured, if feasible, in an electrochemical cell by the voltage across the two half-cells. To Gibbs, reaction spontaneity corresponds to negative values of ∆Grxn. But what is T∆Srxn, absolute temperature times the change in entropy? Gibbs stated that this term quantifies the heating/cooling required to maintain constant temperature in an electrochemical cell. Seeking a deeper explanation than this, one involving the behaviors of atoms and molecules that cause these thermodynamic phenomena, I employed an “atoms first” approach to decipher the physical underpinning of T∆Srxn and, in so doing, developed the hypothesis that this term quantifies the change in “structural energy” of the system during a chemical reaction. This hypothesis now challenges me to similarly explain the physical underpinning of the Gibbs–Helmholtz equation$${\text{d}}\left( {\Delta {\text{G}}_{{{\text{rxn}}}} } \right)/{\text{dT}} = - \Delta {\text{S}}_{{{\text{rxn}}}} \left( {\text{constant P}} \right)$$ d Δ G rxn / dT = - Δ S rxn constant P While this equation illustrates a relationship between ∆Grxn and ∆Srxn, I don’t understand how this is so, especially since orbital electron energies that I hypothesize are responsible for ∆Grxn are not directly involved in the entropy determination of atoms and molecules that are responsible for ∆Srxn. I write this paper to both share my progress and also to seek help from any who can clarify this for me.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,745

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The Science of $${\Theta \Delta }^{\text{cs}}$$.Wayne C. Myrvold - 2020 - Foundations of Physics 50 (10):1219-1251.
Interpreting true arithmetic in the [image] degrees.Thomas F. Kent - 2010 - Journal of Symbolic Logic 75 (2):522 - 550.
Making the Quantum of Relevance.Constantin Antonopoulos - 2005 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 36 (2):223-241.

Analytics

Added to PP
2024-05-02

Downloads
8 (#517,646)

6 months
8 (#1,326,708)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Julius Thomsen and classical thermochemistry.Helge Kragh - 1984 - British Journal for the History of Science 17 (3):255-272.

Add more references