A characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} in extender models [Book Review]

Archive for Mathematical Logic 52 (1-2):67-90 (2013)
  Copy   BIBTEX

Abstract

We prove that, in any fine structural extender model with Jensen’s λ-indexing, there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} -sequence if and only if there is a pair of stationary subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa^{+} \cap {\rm {cof}}( < \kappa)}$$\end{document} without common reflection point of cofinality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ < \kappa}$$\end{document} which, in turn, is equivalent to the existence of a family of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ < \kappa}$$\end{document} of stationary subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa^{+} \cap {\rm {cof}}( < \kappa)}$$\end{document} without common reflection point of cofinality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ < \kappa}$$\end{document}. By a result of Burke/jensen, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\kappa}$$\end{document} fails whenever \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} is a subcompact cardinal. Our result shows that in extender models, it is still possible to construct a canonical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} -sequence where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} is the first subcompact.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,891

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.

Analytics

Added to PP
2013-10-27

Downloads
30 (#520,056)

6 months
9 (#437,668)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Equiconsistencies at subcompact cardinals.Itay Neeman & John Steel - 2016 - Archive for Mathematical Logic 55 (1-2):207-238.
Closure properties of measurable ultrapowers.Philipp Lücke & Sandra Müller - 2021 - Journal of Symbolic Logic 86 (2):762-784.

Add more citations

References found in this work

Some exact equiconsistency results in set theory.Leo Harrington & Saharon Shelah - 1985 - Notre Dame Journal of Formal Logic 26 (2):178-188.
The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
Characterization of □κin core models.Ernest Schimmerling & Martin Zeman - 2004 - Journal of Mathematical Logic 4 (01):1-72.
More fine structural global square sequences.Martin Zeman - 2009 - Archive for Mathematical Logic 48 (8):825-835.

View all 7 references / Add more references