Two-cardinal diamond and games of uncountable length

Archive for Mathematical Logic 54 (3-4):395-412 (2015)
  Copy   BIBTEX

Abstract

Let μ,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \kappa}$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} be three uncountable cardinals such that μ=cf<κ=cf<λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu = {\rm cf} < \kappa = {\rm cf} < \lambda.}$$\end{document} The game ideal NGκ,λμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NG_{\kappa,\lambda}^\mu}$$\end{document} is a normal ideal on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_\kappa }$$\end{document} defined using games of length μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}. We show that if 2≤λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^{} \leq \lambda}$$\end{document} and there are no large cardinals in an inner model, then the diamond principle ♢κ,λ[NGκ,λμ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} [{NG}_{\kappa,\lambda}^\mu]}$$\end{document} holds. We also show that if ♢κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_\kappa }$$\end{document} holds, where S is a stationary subset of κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, then ♢κ,λ:a∩κ∈S})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} : a \cap \kappa \in S\})}$$\end{document} holds.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,069

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

$$I_0$$ I 0 and combinatorics at $$\lambda ^+$$ λ +.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1-2):131-154.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.

Analytics

Added to PP
2015-03-22

Downloads
20 (#792,731)

6 months
4 (#862,832)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.

Add more citations

References found in this work

Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
On the size of closed unbounded sets.James E. Baumgartner - 1991 - Annals of Pure and Applied Logic 54 (3):195-227.
Higher Souslin trees and the generalized continuum hypothesis.John Gregory - 1976 - Journal of Symbolic Logic 41 (3):663-671.

View all 11 references / Add more references