We study normal ideals on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_{\kappa} }$$\end{document} that are defined in terms of games of uncountable length.
We revisit several results concerning club principles and nonsaturation of the nonstationary ideal, attempting to improve them in various ways. So we typically deal with a ideal J extending the nonstationary ideal on a regular uncountable cardinal \, our goal being to witness the nonsaturation of J by the existence of towers ).
Let κ be a regular uncountable cardinal and λ be a cardinal greater than κ. We show that if 2 <κ ≤ M(κ, λ), then ◇ κ,λ holds, where M(κ, λ) equals $\lambda ^{\aleph }0$ if cf(λ) ≥ κ, and $(\lambda ^{+})^{\aleph _{0}}$ otherwise.
Let $\kappa $ be a regular uncountable cardinal, and a cardinal greater than or equal to $\kappa $. Revisiting a celebrated result of Shelah, we show that if is close to $\kappa $ and (= the least size of a cofinal subset of ) is greater than, then can be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that if and, then no (...) $\kappa $ -complete ideal on is weakly -saturated. (shrink)
Given a regular uncountable cardinal κ and a cardinal λ > κ of cofinality ω, we show that the restriction of the non-stationary ideal on Pκ to the set of all a with equation image is not λ++-saturated . We actually prove the stronger result that there is equation image with |Q| = λ++ such that A∩B is a non-cofinal subset of Pκ for any two distinct members A, B of Q, where NGκ, λ denotes the game ideal on Pκ. (...) We also remark that for κ > ω1, adding λ+3 Cohen subsets of ω1 to equation image makes NGκ, λ λ+3-saturated. (shrink)
Let μ,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \kappa}$$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} be three uncountable cardinals such that μ=cf<κ=cf<λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu = {\rm cf} < \kappa = {\rm cf} < \lambda.}$$\end{document} The game ideal NGκ,λμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NG_{\kappa,\lambda}^\mu}$$\end{document} is a normal ideal on Pκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P_\kappa }$$\end{document} defined using games (...) of length μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}. We show that if 2≤λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^{} \leq \lambda}$$\end{document} and there are no large cardinals in an inner model, then the diamond principle ♢κ,λ[NGκ,λμ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} [{NG}_{\kappa,\lambda}^\mu]}$$\end{document} holds. We also show that if ♢κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_\kappa }$$\end{document} holds, where S is a stationary subset of κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, then ♢κ,λ:a∩κ∈S})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\diamondsuit_{\kappa,\lambda} : a \cap \kappa \in S\})}$$\end{document} holds. (shrink)
Given a regular cardinal κ > ω 1 and a cardinal λ with κ ≤ cf (λ) < λ, we show that NS κ,λ | T is not λ+-saturated, where T is the set of all ${a\in P_\kappa (\lambda)}$ such that ${| a | = | a \cap \kappa|}$ and ${{\rm cf} \big( {\rm sup} (a\cap\kappa)\big) = {\rm cf} \big({\rm sup} (a)\big) = \omega}$.
Building upon earlier work of Donna Carr, Don Pelletier, Chris Johnson, Shu-Guo Zhang and others, we show that a normal ideal J on Pκ is strongly normal if and only if J+→< 2 for every μ < κ, and we describe the least normal ideal J on Pκ such that J+ →< 2.
We use games of Kastanas to obtain a new characterization of the classC ℱ of all sets that are completely Ramsey with respect to a given happy family ℱ. We then combine this with ideas of Plewik to give a uniform proof of various results of Ellentuck, Louveau, Mathias and Milliken concerning the extent ofC ℱ. We also study some cardinals that can be associated with the ideal ℐℱ of nowhere ℱ-Ramsey sets.
We present a version for κ-distributive ideals over a regular infinite cardinal κ of some of the combinatorial results of Mathias on happy families. We also study an associated notion of forcing, which is a generalization of Mathias forcing and of Prikry forcing.
. We use ideas of Fred Galvin to show that under Martin's axiom, there is a prime ideal on Pω with the partition property for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
We study the partition relation [email protected]>{\rm w}>>[Y]_{p}^{2}$ that is a weakening of the usual partition relation $X\rightarrow [Y]_{p}^{2}$ . Our main result asserts that if κ is an uncountable strongly compact cardinal and $\germ{d}_{\kappa}\leq \lambda ^{<\kappa}$ , then $I_{\kappa,\lambda}^{+}@>{\rm w}>>[I_{\kappa,\lambda}^{+}]_{\lambda <\kappa}^{2}$ does not hold.
Given a regular infinite cardinal κ and a cardinal λ > κ, we study fine ideals H on Pκ that satisfy the square brackets partition relation equation image, where μ is a cardinal ≥2.
We study the effects of piece selection principles on cardinal arithmetic (Shelah style). As an application, we discuss questions of Abe and Usuba. In particular, we show that if λ ≥ 2 κ $\lambda \ge 2^\kappa$, then (a) I κ, λ $I_{\kappa, \lambda }$ is not (λ, 2)-distributive, and (b) I κ, λ + → ( I κ, λ + ) ω 2 $I_{\kappa, \lambda }^+ \rightarrow (I_{\kappa, \lambda }^+)^2_\omega$ does not hold.
We give a new characterization of the nonstationary ideal on \\) in the case when \ is a regular uncountable cardinal and \ a singular strong limit cardinal of cofinality at least \.
We study the role of meeting numbers in pcf theory. In particular, Shelah's Strong Hypothesis is shown to be equivalent to the assertion that for any singular cardinal σ of cofinality ω, there is a size σ + collection Q of countable subsets of σ with the property that for any infinite subset a of σ, there is a member of Q meeting a in an infinite set.