Ergodic theory, interpretations of probability and the foundations of statistical mechanics

Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):581--94 (2001)
  Copy   BIBTEX

Abstract

The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these two points is held to be an explanation why calculating microcanonical phase averages is a successful algorithm for predicting the values of thermodynamic observables. It is also well-known that this account is problematic.

This survey intends to show that ergodic theory nevertheless may have important roles to play, and it explores three other uses of ergodic theory. Particular attention is paid, firstly, to the relevance of specific interpretations of probability, and secondly, to the way in which the concern with systems in thermal equilibrium is translated into probabilistic language. With respect to the latter point, it is argued that equilibrium should not be represented as a stationary probability distribution as is standardly done; instead, a weaker definition is presented.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,779

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Malament and Zabell on Gibbs phase averaging.Stephen Leeds - 1989 - Philosophy of Science 56 (2):325-340.
The foundational role of ergodic theory.Massimiliano Badino - 2005 - Foundations of Science 11 (4):323-347.
The Ergodic Hypothesis: A Typicality Statement.Paula Reichert - 2024 - In Angelo Bassi, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (eds.), Physics and the Nature of Reality: Essays in Memory of Detlef Dürr. Springer. pp. 285-299.
Ergodic theorems and the basis of science.Karl Petersen - 1996 - Synthese 108 (2):171 - 183.
Essentially Ergodic Behaviour.Paula Reichert - 2023 - British Journal for the Philosophy of Science 74 (1):57-73.
Essentially Ergodic Behaviour.Paula Reichert - 2020 - British Journal for the Philosophy of Science (online):axaa007.

Analytics

Added to PP
2009-01-28

Downloads
166 (#116,751)

6 months
16 (#218,426)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Janneke van Dis
Utrecht University

Citations of this work

What Are the New Implications of Chaos for Unpredictability?Charlotte Werndl - 2009 - British Journal for the Philosophy of Science 60 (1):195-220.
Time in Thermodynamics.Jill North - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.

View all 17 citations / Add more citations