Jon Williamson
University of Kent
In this chapter I discuss connections between machine learning and the philosophy of science. First I consider the relationship between the two disciplines. There is a clear analogy between hypothesis choice in science and model selection in machine learning. While this analogy has been invoked to argue that the two disciplines are essentially doing the same thing and should merge, I maintain that the disciplines are distinct but related and that there is a dynamic interaction operating between the two: a series of mutually beneficial interactions that changes over time. I will introduce some particularly fruitful interactions, in particular the consequences of automated scientific discovery for the debate on inductivism versus falsificationism in the philosophy of science, and the importance of philosophical work on Bayesian epistemology and causality for contemporary machine learning. I will close by suggesting the locus of a possible future interaction: evidence integration.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 55,968
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
75 ( #131,538 of 2,403,483 )

Recent downloads (6 months)
5 ( #156,285 of 2,403,483 )

How can I increase my downloads?


My notes