Order:
  1.  21
    Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps are enumeration degree jumps.) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  2.  28
    Completely mitotic c.e. degrees and non-jump inversion.Evan J. Griffiths - 2005 - Annals of Pure and Applied Logic 132 (2-3):181-207.
    A completely mitotic computably enumerable degree is a c.e. degree in which every c.e. set is mitotic, or equivalently in which every c.e. set is autoreducible. There are known to be low, low2, and high completely mitotic degrees, though the degrees containing non-mitotic sets are dense in the c.e. degrees. We show that there exists an upper cone of c.e. degrees each of which contains a non-mitotic set, and that the completely mitotic c.e. degrees are nowhere dense in the c.e. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark