Sequent calculi for some trilattice logics

Review of Symbolic Logic 2 (2):374-395 (2009)
Abstract
The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, it is shown how the sequent systems for B can be extended to cut-free sequent calculi for Odintsov’s LB, which is an extension of B by adding classical implication and negation connectives
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Ofer Arieli & Arnon Avron (1996). Reasoning with Logical Bilattices. Journal of Logic, Language and Information 5 (1):25--63.

View all 10 references

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-07-10

Total downloads

25 ( #70,692 of 1,102,934 )

Recent downloads (6 months)

3 ( #120,755 of 1,102,934 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.