View year:

  1.  72
    Indistinguishability and the origins of contextuality in physics.José Acacio De Barros, Federico Holik & Décio Krause - 2019 - Philosophical Transactions of the Royal Society A 377 (2157): 20190150.
    In this work, we discuss a formal way of dealing with the properties of contextual systems. Our approach is to assume that properties describing the same physical quantity, but belonging to different measurement contexts, are indistinguishable in a strong sense. To construct the formal theoretical structure, we develop a description using quasi-set theory, which is a set-theoretical framework built to describe collections of elements that violate Leibnitz's principle of identity of indiscernibles. This framework allows us to consider a new ontology (...)
    Direct download (2 more)  
    Export citation  
  2.  52
    Explanation in mathematical conversations: An empirical investigation.Alison Pease, Andrew Aberdein & Ursula Martin - 2019 - Philosophical Transactions of the Royal Society A 377.
    Analysis of online mathematics forums can help reveal how explanation is used by mathematicians; we contend that this use of explanation may help to provide an informal conceptualization of simplicity. We extracted six conjectures from recent philosophical work on the occurrence and characteristics of explanation in mathematics. We then tested these conjectures against a corpus derived from online mathematical discussions. To this end, we employed two techniques, one based on indicator terms, the other on a random sample of comments lacking (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   7 citations  
  3. Hilbert 24th problem.Inês Hipólito & Reinhard Kahle - 2019 - Philosophical Transactions of the Royal Society A 1 (Notion of Simple Proof).
    In 2000, Rüdiger Thiele [1] found in a notebook of David Hilbert, kept in Hilbert's Nachlass at the University of Göttingen, a small note concerning a 24th problem. As Hilbert wrote, he had considered including this problem in his famous problem list for the International Congress of Mathematicians in Paris in 1900.
    Export citation  
    Bookmark   1 citation  
 Previous issues
Next issues