Synthese 199 (5-6):12561-12586 (2021)

Authors
Eduardo Alejandro Barrio
Universidad de Buenos Aires (UBA)
Federico Pailos
Universidad de Buenos Aires (UBA)
Abstract
Anti-exceptionalism about logic states that logical theories have no special epistemological status. Such theories are continuous with scientific theories. Contemporary anti-exceptionalists include the semantic paradoxes as a part of the elements to accept a logical theory. Exploring the Buenos Aires Plan, the recent development of the metainferential hierarchy of ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-logics shows that there are multiple options to deal with such paradoxes. There is a whole ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-based hierarchy, of which LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {LP}}$$\end{document} and ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document} themselves are only the first steps. This means that the logics in this hierarchy are also options to analyze the inferential patterns allowed in a language that contains its own truth predicate. This paper explores these responses analyzing some reasons to go beyond the first steps. We show that LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {LP}}$$\end{document}, ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document} and the logics of the ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-hierarchy offer different diagnoses for the same evidence: the inferences and metainferences the agents endorse in the presence of the truth-predicate. But even if the data are not enough to adopt one of these logics, there are other elements to evaluate the revision of classical logic. Which is the best explanation for the logical principles to deal with semantic paradoxes? How close should we be to classical logic? And mainly, how could a logic obey the validities it contains? From an anti-exceptionalist perspective, we argue that ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-metainferential logics in general—and STTω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {STT}}_{\omega }$$\end{document} in particular—are the best available options to explain the inferential principles involved with the notion of truth.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
ISBN(s)
DOI 10.1007/s11229-021-03343-w
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,436
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Two Dogmas of Empiricism.W. Quine - 1951 - [Longmans, Green].
Two Dogmas of Empiricism.Willard V. O. Quine - 1951 - Philosophical Review 60 (1):20–43.
Philosophy of Logic.W. V. Quine - 1970 - Harvard University Press.
The Foundations of Arithmetic.Gottlob Frege - 1884/1950 - Evanston: Ill., Northwestern University Press.
Outline of a Theory of Truth.Saul Kripke - 1975 - Journal of Philosophy 72 (19):690-716.

View all 57 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Anti-Exceptionalism About Logic.Ole Thomassen Hjortland - 2017 - Philosophical Studies 174 (3):631-658.
The Adoption Problem and Anti-Exceptionalism About Logic.Suki Finn - 2019 - Australasian Journal of Logic 16 (7):231.
On the Metaphysics of (Epistemological) Logical Anti-Exceptionalism.Evelyn Fernandes Erickson - 2021 - Principia: An International Journal of Epistemology 25 (1).
Priest’s Anti-Exceptionalism, Candrakīrti and Paraconsistency.Koji Tanaka - 2019 - In Can Başkent & Thomas Macaulay Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency. Dordrecht: Springer Verlag. pp. 127-138.
Full-Blooded Anti-Exceptionalism About Logic.Newton Da Costa & Jonas R. Becker Arenhart - 2018 - Australasian Journal of Logic 15 (2):362-380.
Abstraction without exceptions.Luca Zanetti - 2021 - Philosophical Studies 178 (10):3197-3216.
What Counts as Evidence for a Logical Theory?Ole Thomassen Hjortland - 2019 - Australasian Journal of Logic 16 (7):250.
How Do Logics Explain?Nicole Wyatt & Gillman Payette - 2018 - Australasian Journal of Philosophy 96 (1):157-167.

Analytics

Added to PP index
2021-08-09

Total views
21 ( #537,400 of 2,519,861 )

Recent downloads (6 months)
8 ( #88,475 of 2,519,861 )

How can I increase my downloads?

Downloads

My notes