Order:
  1.  18
    On Compactifications and the Topological Dynamics of Definable Groups.Jakub Gismatullin, Davide Penazzi & Anand Pillay - 2014 - Annals of Pure and Applied Logic 165 (2):552-562.
    For G a group definable in some structure M, we define notions of “definable” compactification of G and “definable” action of G on a compact space X , where the latter is under a definability of types assumption on M. We describe the universal definable compactification of G as View the MathML source and the universal definable G-ambit as the type space SG. We also point out the existence and uniqueness of “universal minimal definable G-flows”, and discuss issues of amenability (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  13
    Weak One-Basedness.Gareth Boxall, David Bradley-Williams, Charlotte Kestner, Alexandra Omar Aziz & Davide Penazzi - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):435-448.
    We study the notion of weak one-basedness introduced in recent work of Berenstein and Vassiliev. Our main results are that this notion characterizes linearity in the setting of geometric þ-rank 1structures and that lovely pairs of weakly one-based geometric þ-rank 1 structures are weakly one-based with respect to þ-independence. We also study geometries arising from infinite-dimensional vector spaces over division rings.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3.  93
    One-Basedness and Groups of the Form G/G 00.Davide Penazzi - 2011 - Archive for Mathematical Logic 50 (7-8):743-758.
    We initiate a geometric stability study of groups of the form G/G 00, where G is a 1-dimensional definably compact, definably connected, definable group in a real closed field M. We consider an enriched structure M′ with a predicate for G 00 and check 1-basedness or non-1-basedness for G/G 00, where G is an additive truncation of M, a multiplicative truncation of M, SO 2(M) or one of its truncations; such groups G/G 00 are now interpretable in M′. We prove (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark