Order:
  1.  11
    Tame Properties of Sets and Functions Definable in Weakly o-Minimal Structures.Jafar S. Eivazloo & Somayyeh Tari - 2014 - Archive for Mathematical Logic 53 (3-4):433-447.
    Let M=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}=}$$\end{document} be a weakly o-minimal expansion of a dense linear order without endpoints. Some tame properties of sets and functions definable in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} which hold in o-minimal structures, are examined. One of them is the intermediate value property, say IVP. It is shown that strongly continuous definable functions in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} satisfy an extended (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  23
    SCE-Cell Decomposition and OCP in Weakly O-Minimal Structures.Jafar S. Eivazloo & Somayyeh Tari - 2016 - Notre Dame Journal of Formal Logic 57 (3):399-410.
    Continuous extension cell decomposition in o-minimal structures was introduced by Simon Andrews to establish the open cell property in those structures. Here, we define strong $\mathrm{CE}$-cells in weakly o-minimal structures, and prove that every weakly o-minimal structure with strong cell decomposition has $\mathrm{SCE}$-cell decomposition if and only if its canonical o-minimal extension has $\mathrm{CE}$-cell decomposition. Then, we show that every weakly o-minimal structure with $\mathrm{SCE}$-cell decomposition satisfies $\mathrm{OCP}$. Our last result implies that every o-minimal structure in which every definable open (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  27
    Expansions of Ordered Fields Without Definable Gaps.Jafar S. Eivazloo & Mojtaba Moniri - 2003 - Mathematical Logic Quarterly 49 (1):72-82.
    In this paper we are concerned with definably, with or without parameters, complete expansions of ordered fields, i. e. those with no definable gaps. We present several axiomatizations, like being definably connected, in each of the two cases. As a corollary, when parameters are allowed, expansions of ordered fields are o-minimal if and only if all their definable subsets are finite disjoint unions of definably connected subsets. We pay attention to how simply a definable gap in an expansion is so. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark