Deutsch on quantum decision theory

A major problem facing no-collapse interpretations of quantum mechanics in the tradition of Everett is how to understand the probabilistic axiom of quantum mechanics (the Born rule) in the context of a deterministic theory in which every outcome of a measurement occurs. Deutsch claims to derive a decision-theoretic analogue of the Born rule from the non-probabilistic part of quantum mechanics and some non-probabilistic axioms of classical decision theory, and hence concludes that no probabilistic axiom is needed. I argue that Deutsch’s derivation begs the question.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,707
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Meir Hemmo (2007). Quantum Probability and Many Worlds. Studies in History and Philosophy of Science Part B 38 (2):333-350.
Dennis Dieks (2007). Probability in Modal Interpretations of Quantum Mechanics. Studies in History and Philosophy of Science Part B 38 (2):292-310.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

62 ( #55,012 of 1,726,249 )

Recent downloads (6 months)

21 ( #40,147 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.