6 found
  1.  18
    Forcing absoluteness and regularity properties.Daisuke Ikegami - 2010 - Annals of Pure and Applied Logic 161 (7):879-894.
    For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over and the core model . We use our results to answer open questions from set theory of the reals.
    Direct download (5 more)  
    Export citation  
    Bookmark   12 citations  
  2.  48
    Boolean-Valued Second-Order Logic.Daisuke Ikegami & Jouko Väänänen - 2015 - Notre Dame Journal of Formal Logic 56 (1):167-190.
    In so-called full second-order logic, the second-order variables range over all subsets and relations of the domain in question. In so-called Henkin second-order logic, every model is endowed with a set of subsets and relations which will serve as the range of the second-order variables. In our Boolean-valued second-order logic, the second-order variables range over all Boolean-valued subsets and relations on the domain. We show that under large cardinal assumptions Boolean-valued second-order logic is more robust than full second-order logic. Its (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   2 citations  
  3.  23
    On a class of maximality principles.Daisuke Ikegami & Nam Trang - 2018 - Archive for Mathematical Logic 57 (5-6):713-725.
    We study various classes of maximality principles, \\), introduced by Hamkins :527–550, 2003), where \ defines a class of forcing posets and \ is an infinite cardinal. We explore the consistency strength and the relationship of \\) with various forcing axioms when \. In particular, we give a characterization of bounded forcing axioms for a class of forcings \ in terms of maximality principles MP\\) for \ formulas. A significant part of the paper is devoted to studying the principle MP\\) (...)
    No categories
    Direct download (4 more)  
    Export citation  
    Bookmark   1 citation  
  4.  11
    Determinacy and regularity properties for idealized forcings.Daisuke Ikegami - 2022 - Mathematical Logic Quarterly 68 (3):310-317.
    We show under that every set of reals is I‐regular for any σ‐ideal I on the Baire space such that is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under if we additionally assume that the set of Borel codes for I‐positive sets is. If we do not assume, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to (...)
    No categories
    Direct download (2 more)  
    Export citation  
  5.  88
    Projective absoluteness for Sacks forcing.Daisuke Ikegami - 2009 - Archive for Mathematical Logic 48 (7):679-690.
    We show that ${{\bf \Sigma}^1_3}$ -absoluteness for Sacks forcing is equivalent to the non-existence of a ${{\bf \Delta}^1_2}$ Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to ${{\bf \Sigma}^1_3}$ forcing absoluteness.
    Direct download (6 more)  
    Export citation  
    Bookmark   1 citation  
  6.  55
    The axiom of real Blackwell determinacy.Daisuke Ikegami, David de Kloet & Benedikt Löwe - 2012 - Archive for Mathematical Logic 51 (7-8):671-685.
    The theory of infinite games with slightly imperfect information has been developed for games with finitely and countably many moves. In this paper, we shift the discussion to games with uncountably many possible moves, introducing the axiom of real Blackwell determinacy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{Bl-AD}_\mathbb{R}}$$\end{document} (as an analogue of the axiom of real determinacy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{AD}_\mathbb{R}}$$\end{document}). We prove that the consistency strength of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} (...)
    Direct download (7 more)  
    Export citation