31 found
Order:
  1.  11
    Combinatory Logic.Haskell B. Curry, J. Roger Hindley & Jonathan P. Seldin - 1977 - Journal of Symbolic Logic 42 (1):109-110.
    Direct download  
     
    Export citation  
     
    Bookmark   45 citations  
  2. On the Proof Theory of the Intermediate Logic MH.Jonathan P. Seldin - 1986 - Journal of Symbolic Logic 51 (3):626-647.
    A natural deduction formulation is given for the intermediate logic called MH by Gabbay in [4]. Proof-theoretic methods are used to show that every deduction can be normalized, that MH is the weakest intermediate logic for which the Glivenko theorem holds, and that the Craig-Lyndon interpolation theorem holds for it.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  3.  44
    Normalization and Excluded Middle. I.Jonathan P. Seldin - 1989 - Studia Logica 48 (2):193 - 217.
    The usual rule used to obtain natural deduction formulations of classical logic from intuitionistic logic, namely.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  4.  27
    On the Proof Theory of Coquand's Calculus of Constructions.Jonathan P. Seldin - 1997 - Annals of Pure and Applied Logic 83 (1):23-101.
  5.  32
    Edward J. Cogan. A Formalization of the Theory of Sets From the Point of View of Combinatory Logic. Zeitschrift Für Mathematische Logik Und Grundlagen der Mathematik, Vol. 1 , Pp. 198–240. - Rainer Titgemeyer. Über Einen Widerspruch in Cogans Darstellung der Mengenlehre.Zeitschrift Für Mathematische Logik Und Grundlagen der Mathematik, Vol. 7 , Pp. 161–163. [REVIEW]Jonathan P. Seldin - 1970 - Journal of Symbolic Logic 35 (1):147.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6.  28
    Corrado Böhm and Wolf Gross. Introduction to the CUCH. Automata Theory, Edited by E. R. Caianiello, Academic Press, New York and London1966, Pp. 35–65. Reprinted in Pubblicazioni dell'Istituto Nazionale Per le Applicazioni Del Calcolo, Ser. 11 No. 669, Rome 1966. - C. Böhm. The CUCH as a Formal and Description Language. Formal Language Description Languages for Computer Programming, Proceedings of the IFIP Working Conference on Formal Language Description Languages, Edited by T. B. SteelJr., North-Holland Publishing Company, Amsterdam1966, Pp. 179–197. [REVIEW]Jonathan P. Seldin - 1975 - Journal of Symbolic Logic 40 (1):81-83.
  7.  27
    Jean-Pierre Ginisti. La Logique Combinatoire. Qui Sais-Je? No. 3205. Presses Universitaires de France, Paris1997, 127 Pp. [REVIEW]Jonathan P. Seldin - 1999 - Journal of Symbolic Logic 64 (4):1833-1834.
  8.  23
    Maarten Wicher Visser Bunder. Set Theory Based on Combinatory Logic. Dissertation Amsterdam 1969, 80 Pp. + 3 Pp. Of Corrections. [REVIEW]Jonathan P. Seldin - 1970 - Journal of Symbolic Logic 35 (1):147-148.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  23
    John T. Kearns. Combinatory Logic with Discriminators. The Journal of Symbolic Logic, Vol. 34 , Pp. 561–575.Jonathan P. Seldin - 1973 - Journal of Symbolic Logic 38 (2):339-340.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  31
    A Sequent Calculus for Type Assignment.Jonathan P. Seldin - 1977 - Journal of Symbolic Logic 42 (1):11-28.
  11.  42
    Review: N. G. De Bruijn, Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. [REVIEW]Jonathan P. Seldin - 1975 - Journal of Symbolic Logic 40 (3):470-470.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12.  26
    Set Theory Based on Combinatory Logic.Jonathan P. Seldin & Maarten Wicher Visser Bunder - 1970 - Journal of Symbolic Logic 35 (1):147.
  13.  38
    Equality in F21.Jonathan P. Seldin - 1973 - Journal of Symbolic Logic 38 (4):571 - 575.
  14.  58
    On the Role of Implication in Formal Logic.Jonathan P. Seldin - 2000 - Journal of Symbolic Logic 65 (3):1076-1114.
    Evidence is given that implication (and its special case, negation) carry the logical strength of a system of formal logic. This is done by proving normalization and cut elimination for a system based on combinatory logic or λ-calculus with logical constants for and, or, all, and exists, but with none for either implication or negation. The proof is strictly finitary, showing that this system is very weak. The results can be extended to a "classical" version of the system. They can (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  15.  29
    Arithmetic as a Study of Formal Systems.Jonathan P. Seldin - 1975 - Notre Dame Journal of Formal Logic 16 (4):449-464.
  16.  19
    The ${\Bf Q}$-Consistency of ${\Cal F}_{22}$.Jonathan P. Seldin - 1977 - Notre Dame Journal of Formal Logic 18 (1):117-127.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  32
    Curry’s Formalism as Structuralism.Jonathan P. Seldin - 2011 - Logica Universalis 5 (1):91-100.
    In 1939, Curry proposed a philosophy of mathematics he called formalism. He made this proposal in two works originally written then, although one of them was not published until 1951. These are the two philosophical works for which Curry is known, and they have left a false impression of his views. In this article, I propose to clarify Curry’s views by referring to some of his later writings on the subject. I claim that Curry’s philosophy was not what is now (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  28
    Some Anomalies in Fitch's System QD.M. W. Bunder & Jonathan P. Seldin - 1978 - Journal of Symbolic Logic 43 (2):247-249.
  19.  28
    A Second Corrigendum to My Paper: ``Note on Definitional Reductions''.Jonathan P. Seldin - 1980 - Notre Dame Journal of Formal Logic 21 (4):728-728.
  20.  19
    Equality In.Jonathan P. Seldin - 1973 - Journal of Symbolic Logic 38 (4):571-575.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  22
    Corrigendum to My Paper: ``Note on Definitional Reductions''.Jonathan P. Seldin - 1969 - Notre Dame Journal of Formal Logic 10 (4):412-412.
  22.  17
    A Sequent Calculus Formulation of Type Assignment with Equality Rules for the \Ambdaβ-Calculus.Jonathan P. Seldin - 1978 - Journal of Symbolic Logic 43 (4):643-649.
  23.  19
    Equality in $Mathscr{F}_{21}$.Jonathan P. Seldin - 1973 - Journal of Symbolic Logic 38 (4):571-575.
  24.  16
    Interpreting HOL in the Calculus of Constructions.Jonathan P. Seldin - 2004 - Journal of Applied Logic 2 (2):173-189.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  18
    Review: John T. Kearns, Combinatory Logic with Discriminators. [REVIEW]Jonathan P. Seldin - 1973 - Journal of Symbolic Logic 38 (2):339-340.
    Direct download  
     
    Export citation  
     
    Bookmark  
  26.  15
    Variants of the Basic Calculus of Constructions.M. W. Bunder & Jonathan P. Seldin - 2004 - Journal of Applied Logic 2 (2):191-217.
  27.  39
    On Adding (Ξ) to Weak Equality in Combinatory Logic.Martin W. Bunder, J. Roger Hindley & Jonathan P. Seldin - 1989 - Journal of Symbolic Logic 54 (2):590-607.
    Because the main difference between combinatory weak equality and λβ-equality is that the rule \begin{equation*}\tag{\xi} X = Y \vdash \lambda x.X = \lambda x.Y\end{equation*} is valid for the latter but not the former, it is easy to assume that another way of defining combinatory β-equality is to add rule (ξ) to the postulates for weak equality. However, to make this true, one must choose the definition of combinatory abstraction in (ξ) very carefully. If one tries to use one of the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  28.  21
    The Logic of Church and Curry.Jonathan P. Seldin - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 5--819.
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  20
    Review: Jean-Pierre Ginisti, La Logique Combinatoire. [REVIEW]Jonathan P. Seldin - 1999 - Journal of Symbolic Logic 64 (4):1833-1834.
  30.  18
    Note on Definitional Reductions.Jonathan P. Seldin - 1968 - Notre Dame Journal of Formal Logic 9 (1):4-6.
  31.  11
    Bridging Curry and Church's Typing Style.Fairouz Kamareddine, Jonathan P. Seldin & J. B. Wells - 2016 - Journal of Applied Logic 18:42-70.