This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related categories

460 found
Order:
1 — 50 / 460
  1. Contradictions Inherent in Special Relativity: Space Varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on this will (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. 3. Planck Unit Quantum Gravity (Gravitons) for Simulation Hypothesis Modeling.Malcolm J. Macleod - manuscript
    Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that is (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. Is Euclid's Proof of the Infinitude of Prime Numbers Tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of the proof of (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. The Case Against Infinity.Kip Sewell - manuscript
    Infinity and infinite sets, as traditionally defined in mathematics, are shown to be logical absurdities. To maintain logical consistency, mathematics ought to abandon the traditional notion of infinity. It is proposed that infinity should be replaced with the concept of “indefiniteness”. This further implies that other fields drawing on mathematics, such as physics and cosmology, ought to reject theories that postulate infinities of space and time. It is concluded that however indefinite our calculations of space and time become, the Universe (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. Phenomenology and Philosophy of Mathematics.Roman Murawski - unknown - Poznan Studies in the Philosophy of the Sciences and the Humanities 98:135-146.
  6. Mathematical Explanations of Physical Phenomena.Sorin Bangu - forthcoming - Tandf: Australasian Journal of Philosophy:1-14.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. Foundations and Methods From Mathematics to Neuroscience.Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.) - forthcoming - CSLI Publications.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  8. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
  9. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. The Role of Mathematical Tools in Scientific Phenomenon Explanation–A Guarantee of Reliability or a Pillar of False Credibility?Vladimir Drekalović - 2020 - Filosofija. Sociologija 31 (1).
    Ever since its beginnings, mathematics has occupied a special position among all sciences, natural, as well as social sciences and humanities. It has not only provided a role model in terms of methodology, particularly when it comes to natural sciences, but other sciences have always relied on mathematics extensively both in their development and for solving various open questions. The beginning of the 21st century foregrounded the issue of the so-called explanatory role of mathematics in science. However, the reference literature (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  11. 私は奇妙なループです」のレビュー(I am a Strange Loop) by Douglas Hofstadter (2007) (レビュー改訂2019).Michael Richard Starks - 2020 - In 地獄へようこそ 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV, USA: Reality Press. pp. 102-118.
    ホフスタッター牧師による原理主義自然主義教会からの最新の説教。彼のはるかに有名な(または容赦ない哲学的誤りで悪名高い)作品ゴーデル、エッシャー、バッハのように、それは表面的な妥当性を持っていますが、こ れが哲学的なものと実際の科学的問題を混ぜ合わせた横行するサイエンティズムであることを理解すれば(つまり、唯一の本当の問題は、私たちがプレイすべき言語ゲームです)、その後、ほとんどすべての関心が消えます 。進化心理学とヴィトゲンシュタインの仕事に基づく分析のフレームワークを提供しています(最近の著作で更新されて以来)。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます .
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12. Noson Yanofsky 403p (2013) द्वारा 'कारण की बाहरी सीमा' की समीक्षा Review of 'The Outer Limits of Reason' by Noson Yanofsky (संशोधित 2019).Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Las Vegas, NV, USA: Reality Press. pp. 221-238.
    मैं Wittgenstein और विकासवादी मनोविज्ञान के एक एकीकृत परिप्रेक्ष्य से Noson Yanofsky द्वारा 'कारण की बाहरी सीमा' की एक विस्तृत समीक्षा दे. मैं संकेत मिलता है कि भाषा और गणित में विरोधाभास के रूप में इस तरह के मुद्दों के साथ कठिनाई, अपूर्णता, अनिर्णयीयता, computability, मस्तिष्क और कंप्यूटर आदि के रूप में ब्रह्मांड, सभी विफलता से उठता है उचित में भाषा के हमारे उपयोग को ध्यान से देखने के लिए संदर्भ और इसलिए कैसे भाषा काम करता है के मुद्दों से (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. 《我是一个奇怪的循环》的回顾由道格拉斯·霍夫施塔特 (2007)(Review of I Am a Strange Loop by Douglas Hofstadter (2007)) (审查修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱: 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 105-120.
    霍夫施塔特牧师从原教旨主义自然主义教会的最新讲道。像他更出名(或臭名昭著的无情的哲学错误)的工作戈德尔,埃舍尔,巴赫,它有一个肤浅的合理性,但如果人们明白,这是猖獗的科学主义,混合真正的科学问题与哲学 问题(即,只有真正的问题是我们应该玩什么语言游戏),然后几乎所有的兴趣消失。我提供了一个基于进化心理学和维特根斯坦工作的分析框架(自从我最近的著作中更新)。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、心神 (Mind) 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019).
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14. 一致性、不可解释、随机性、可估计和不完整意味着什么?戈德尔之路回顾:格雷戈里·柴丁、弗朗西斯科·阿·多里亚、牛顿·达·科斯塔160p(2012年)的《开发进入一个无法辨认的世界》(What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012)) (2019年修订版).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱: 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 159-172.
    在《哥德尔之路》中,三位杰出的科学家讨论了不可解性、不完整性、随机性、可估计性和副一致性等问题。我从维特根斯坦的观点出发来处理这些问题,即有两个基本问题有着完全不同的解决方案。有科学或经验问题,这是关 于世界的事实,需要研究观察和哲学问题,如何使用语言可理解(其中包括数学和逻辑中的某些问题),需要通过查看我们在特定上下文中实际使用单词的方式来决定。当我们清楚要玩哪种语言游戏时,这些话题就像其他话题一 样被视为普通的科学和数学问题。维特根斯坦的见解很少被平等,也从未被超越,今天和80年前他口述《蓝书》和《棕色书》时一样具有现实意义。尽管它的失败——实际上是一系列笔记,而不是一本已完成的书——这是这三 位著名学者作品的独特来源,他们半个多世纪以来一直在物理学、数学和哲学的流血边缘工作。达科斯塔和多里亚被沃尔珀特引用(见下文或我的文章沃尔珀特和我对亚诺夫斯基的"理性的外在极限"的评 论),因为他们写了通用计算,在他的许多成就中,达科斯塔是先驱参数一致性。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019) .
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  15. Was bedeuten Parakonsistente, Unentscheidbar, Zufällig, Berechenbar und Unvollständige? Eine Rezension von „Godels Weg: Exploits in eine unentscheidbare Welt“ (Godels Way: Exploits into a unecidable world) von Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Las Vegas, NV , USA: Reality Press. pp. 1171-185.
    In "Godel es Way" diskutieren drei namhafte Wissenschaftler Themen wie Unentschlossenheit, Unvollständigkeit, Zufälligkeit, Berechenbarkeit und Parakonsistenz. Ich gehe diese Fragen aus Wittgensteiner Sicht an, dass es zwei grundlegende Fragen gibt, die völlig unterschiedliche Lösungen haben. Es gibt die wissenschaftlichen oder empirischen Fragen, die Fakten über die Welt sind, die beobachtungs- und philosophische Fragen untersuchen müssen, wie Sprache verständlich verwendet werden kann (die bestimmte Fragen in Mathematik und Logik beinhalten), die entschieden werden müssen, indem man sich anschaut,wie wir Wörter in bestimmten (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16. 诺森·亚诺夫斯基《理性外在极限》回顾403p (2013) (Review of 'The Outer Limits of Reason' by Noson Yanofsky 403p (2013)) (修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱: 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 178-191.
    我从维特根斯坦和进化心理学的统一视角,对诺森·亚诺夫斯基的《理性的外在极限》进行了详细的回顾。我指出,语言和数学悖论、不完整、不可定定、可计算性、大脑和宇宙作为计算机等问题的困难,都源于未能在适当的方 面仔细审视我们使用语言的问题。上下文,因此未能将科学事实问题与语言如何工作的问题分开。我讨论了维特根斯坦对不完整、不一致性和不可解释性的看法,以及沃尔珀特对计算极限的工作。总结一下:根据布鲁克林--- 良好的科学,不是那么好的哲学的宇宙。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019).
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  17. のレビュー"「理由の外側の限界"」(The Outer Limits of Reason) by Noson Yanofsky (2019年改訂レビュー).Michael Richard Starks - 2020 - In 地獄へようこそ 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV , USA: Reality Press. pp. 178-192.
    ノソン・ヤノフスキーの「理性の外側の限界」を、ウィトゲンシュタインと進化心理学の統一的な視点から詳しくレビューします。私は、言語や数学のパラドックス、不完全さ、デデシッド性、コンピュータとしての脳、宇 宙などの問題の難しさは、すべて適切な文脈での言語の使用を注意深く見なさなかったことから生じるため、科学的事実の問題を言語の仕組みの問題から切り離すことができなかったことを示しています。私は、不完全さ、 パラタンシ、不整合性に関するヴィトゲンシュタインの見解と、計算の限界に関するウォルパートの仕事について議論します。要約すると:ブルックリンによると宇宙---良い科学、それほど良い哲学ではありません。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます。 .
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  18. Cosa significano Paraconsistente, Indecifrabile, Casuale, Calcolabile e Incompleto? Una recensione di Godel's Way: sfrutta in un mondo indecidibile (Godel's Way: Exploits into an Undecidable World) di Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (rivisto 2019).Michael Richard Starks - 2020 - In Benvenuti all'inferno sulla Terra: Bambini, Cambiamenti climatici, Bitcoin, Cartelli, Cina, Democrazia, Diversità, Disgenetica, Uguaglianza, Pirati Informatici, Diritti umani, Islam, Liberalismo, Prosperità, Web, Caos, Fame, Malattia, Violenza, Intellige. Las Vegas, NV, USA: Reality Press. pp. 163-176.
    Nel 'Godel's Way' tre eminenti scienziati discutono questioni come l'indecidibilità, l'incompletezza, la casualità, la computabilità e la paracoerenza. Affronto questi problemi dal punto di vista di Wittgensteinian che ci sono due questioni fondamentali che hanno soluzioni completamente diverse. Ci sono le questioni scientifiche o empiriche, che sono fatti sul mondo che devono essere studiati in modo osservante e filosofico su come il linguaggio può essere usato in modo intelligibilmente (che include alcune domande in matematica e logica), che devono essere decise (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  19. Обзор “Я странная петля” (I Am a Strange Loop) by Douglas Hofstadter (2007) (обзор пересмотрен 2019).Michael Richard Starks - 2020 - In ДОБРО ПОЖАЛОВАТЬ В АД НА НАШЕМ МИРЕ : Дети, Изменение климата, Биткойн, Картели, Китай, Демократия, Разнообразие, Диссигеника, Равенство, Хакеры, Права человека, Ислам, Либерализм, Процветание, Сеть, Хаос, Голод, Болезнь, Насилие, Искусственный интелле. Las Vegas, NV USA: Reality Press. pp. 111-128.
    Последняя проповедь из Церкви фундаменталистского натурализма пастора Хофштадтера. Как и его гораздо более известный (или печально известный своими неустанными философскими ошибками) работа Годеля, Эшера, Баха, он имеет поверхностную правдоподобность, но если понять, что это безудержный саентизм, который смешивает реальные научные вопросы с философскими (т.е. единственными реальными вопросами являются то, что языковые игры мы должны играть), то почти все его интерес исчезает. Я предоставляю основу для анализа, основанного на эволюционной психологии и работе Витгенштейна (с тех пор, как он был обновлен в (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  20. मैं डगलस Hofstadter (2007) द्वारा एक अजीब लू प हूँ की समीक्षा--Review of I Am a Strange Loop by Douglas Hofstadter.Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Las Vegas, NV,. USA: Reality Press. pp. 130-150.
    पादरी Hofstadter द्वारा कट्टरपंथी प्रकृतिवाद के चर्च से नवीनतम उपदेश. अपने बहुत अधिक प्रसिद्ध (या अपने अथक दार्शनिक त्रुटियों के लिए कुख्यात) काम Godel, Escher, बाख की तरह, यह एक सतही प्रशंसनीयता है, लेकिन अगर एक समझता है कि यह बड़े पैमाने पर वैज्ञानिकता है जो दार्शनिक लोगों के साथ वास्तविक वैज्ञानिक मुद्दों घोला जा सकता है (यानी, केवल असली मुद्दों क्या भाषा का खेल हम खेलना चाहिए रहे हैं) तो लगभग सभी अपनी रुचि गायब हो जाता है. मैं विकासवादी (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  21. असंभव, अपूर्णता, अपूर्णता, झूठा विरोधाभास, सिद्धांतवाद, गणना की सीमा, एक गैर-क्वांटम यांत्रिक अनिश्चितता सिद्धांत और कंप्यूटर के रूप में ब्रह्मांड पर Wolpert, Chaitin और Wittgenstein ट्यूरिंग मशीन थ्योरी में अंतिम प्रमेय --Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (संशोधित 2019).Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Las Vegas, NV, USA: Reality Press. pp. 215-220.
    मैं कंप्यूटर के रूप में गणना और ब्रह्मांड की सीमा के कई हाल ही में चर्चा पढ़ लिया है, polymath भौतिक विज्ञानी और निर्णय सिद्धांतकार डेविड Wolpert के अद्भुत काम पर कुछ टिप्पणी खोजने की उम्मीद है, लेकिन एक भी प्रशस्ति पत्र नहीं मिला है और इसलिए मैं यह बहुत संक्षिप्त मौजूद सारांश. Wolpert कुछ आश्चर्यजनक असंभव या अधूरापन प्रमेयों साबित कर दिया (1992 से 2008-देखें arxiv dot org) अनुमान के लिए सीमा पर (कम्प्यूटेशन) कि इतने सामान्य वे गणना कर (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  22. Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter (2007) (reseña revisado 2019).Michael Richard Starks - 2020 - In Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política, Economía, Historia y Literatura - Artículos y reseñas 2006-2019. Las Vegas, NV USA: Reality Press. pp. 265-282.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23. Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Mathematical Explanation as Part of an (Im) Perfect Scientific Explanation: An Analysis of Two Examples.Vladimir Drekalović - 2019 - Filozofia Nauki 28 (4):23-41.
    Alan Baker argues that mathematical objects play an indispensable explanatory role in science. There are several examples cited in the literature as solid candidates for such a role. We discuss two such examples and show that they are very different in their strength and (im)perfection, although both are recognized by the scientific community as examples of the best scientific explanations of particular phenomena. More specifically, it will be shown that the explanation of the cicada case has serious shortcomings compared with (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. Philosophie I Maximen 0 / Philosophy I Maxims 0: Philosophische Notizbücher Band 1 / Philosophical Notebooks Volume 1.Kurt Gödel - 2019 - Berlin / Boston: De Gruyter.
    Over a period of 22 years (1934-1955), the mathematician Kurt Gödel wrote down a series of philosophical reflections, the so-called Philosophical Remarks (Max Phil). They have been handed down in 15 notebooks written in Gabelsberg shorthand. The first notebook contains general philosophical reflections. Notebooks two and three consist of Gödel's individual ethics. The notebooks that follow clearly show that Gödel had designed a philosophy of science in which he placed his discussions of physics, psychology, biology, mathematics, language, theology, and history (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  26. Замечания о невозможности, неполноте Paraconsistency, Нерешающость, Случайность вычислительности, парадокс, и неопределенность в Чайтин, Витгенштейн, Хофштадтер Вольперт, Дориа, да Коста, Годель, Сирл, Родыч Берто, Флойд, Мойал-Шаррок и Янофски.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Принято считать, что невозможность, неполнота, Парапоследовательность, Несоответствие, Случайность, вычислительность, парадокс, неопределенность и пределы разума являются разрозненными научными физическими или математическими вопросами, имеющими мало или ничего общего. Я полагаю, что они в значительной степени стандартные философские проблемы (т.е. языковые игры), которые были в основном решены Витгенштейном более 80 лет назад. -/- Я предоставляю краткое резюме некоторых из основных выводов двух из самых выдающихся студентов поведения о Fсовременности, Людвиг Витгенштейн и Джон Сирл, на логическую структуру преднамеренности (ум, язык, поведение), принимая в качестве (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27. اظهارات در مورد عدم امکان ، بی کامل بودن ، پاراستشتها، Undecidability ، اتفاقی ، Computability ، پارادوکس ، و عدم قطعیت در Chaitin ، ویتگنشتاین ، Hofstadter ، Wolpert ، doria ، دا کوستا ، گودل ، سرل ، رودیچ ، برتو ، فلوید ، مویال-شرراک و یانفسکی.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    معمولا تصور می شود که عدم امکان ، بی کامل بودن ، پارامونشتها ، Undecidability ، اتفاقی ، قابلیت های مختلف ، پارادوکس ، عدم قطعیت و محدودیت های دلیل ، مسائل فیزیکی و ریاضی علمی و یا با داشتن کمی یا هیچ چیز در مشترک. من پیشنهاد می کنم که آنها تا حد زیادی مشکلات فلسفی استاندارد (به عنوان مثال ، بازی های زبان) که عمدتا توسط ویتگنشتاین بیش از 80 سال پیش حل و فصل شد. -/- "آنچه ما (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  28. असंभव, अपूर्णता, अनिर्णय, अनिर्णय, यादृच्छिकता, गणना, विरोधाभास, और चैटिन, विटगेनस्टीन, Hofstadter, Wolpert, डोरिया, दा कोस्टा, गोडेल, सीरले, Rodych, Berto, Floyd में अनिश्चितता पर टिप्पणी मोयाल-शररॉक और यानोफ्स्की.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    यह आमतौर पर सोचा जाता है कि असंभवता, अपूर्णता, Paraconsistency, अनिर्णितता, Randomness, Computability, विरोधाभास, अनिश्चितता और कारण की सीमा अलग वैज्ञानिक शारीरिक या गणितीय मुद्दों में कम या कुछ भी नहीं कर रहे हैं आम. मेरा सुझाव है कि वे काफी हद तक मानक दार्शनिक समस्याओं (यानी, भाषा का खेल) जो ज्यादातर 80years पहले Wittgenstein द्वारा हल किए गए थे. -/- "क्या हम 'इस तरह के एक मामले में कहने के लिए' कर रहे हैं, ज़ाहिर है, दर्शन नहीं है, लेकिन (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  29. Pernyataan tentang kemustahilan, ketidaklengkapan, Paraconsistency,Undecidability, Randomness, Komputabilitas, paradoks, dan ketidakpastian dalam Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock dan Yanofsky.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak ada dalam Umum. Saya menyarankan bahwa mereka sebagian besar masalah filosofis standar (yaitu, Permainan bahasa) yang sebagian besar diselesaikan oleh Wittgenstein lebih dari 80years yang lalu. -/- "Apa yang kita ' tergoda untuk mengatakan ' dalam kasus seperti ini, tentu saja, bukan filsafat, tetapi bahan baku. Jadi, misalnya, apa yang seorang matematikawan cenderung mengatakan (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  30. ملاحظات على استحالة, عدم اكتمال, بارااتساق,عدم تحديد, عشوائية, الحوسبة, مفارقة, وعدم اليقين في Chaitin, Wittgenstein, Hofstadter, Wolpert, دوريا, دا كوستا, جوديل, سيرل, روديش, بيرتو, فلويد, مويال شاروك ويانوفسكي.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    ويعتقد عادة أن الاستحالة، وعدم اكتمال، وParaconsistency، وعدم تحديد، العشوائية، والحوسبة، والمفارقة، وعدم اليقين وحدود العقل هي قضايا علمية مادية أو رياضية متباينة وجود القليل أو لا شيء في المشتركه. أقترح أنها مشاكل فلسفية قياسية إلى حد كبير (أي ألعاب اللغة) التي تم حلها في الغالب من قبل فيتغنشتاين أكثر من 80years منذ. -/- "إن ما نميل إلى قوله في مثل هذه الحالة هو، بطبيعة الحال، ليس فلسفة، ولكنه مادة خام. وهكذا، على سبيل المثال، ما يميل عالم الرياضيات إلى قوله (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  31. Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter.Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 21-43.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. On the Alleged Simplicity of Impure Proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Varieties of Maverick Philosophy of Mathematics.Carlo Cellucci - 2017 - In Humanizing Mathematics and its Philosophy. Cham, Switzerland: pp. 223-251.
    Reuben Hersh is a champion of maverick philosophy of mathematics. He maintains that mathematics is a human activity, intelligible only in a social context; it is the subject where statements are capable in principle of being proved or disproved, and where proof or disproof bring unanimous agreement by all qualified experts; mathematicians' proof is deduction from established mathematics; mathematical objects exist only in the shared consciousness of human beings. In this paper I describe my several points of agreement and few (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Is Mathematics Problem Solving or Theorem Proving?Carlo Cellucci - 2017 - Foundations of Science 22 (1):183-199.
    The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Two Criticisms Against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Can Arguments of Formal Naturalism Be Used to Show That the Mathematical Explanation is Indispensable in Science?Vladimir Drekalović - 2016 - Filozofska Istrazivanja 36 (3):545-559.
    In the philosophy of mathematics, it is well known that the Platonists support the view of the existence of mathematical objects. The so-called Enhanced indispensability argument EIA, recently explicitly formulated by Alan Baker in the form of modal syllogisms, can be understood as an attempt to support this Platonic view. this argument has recently caused a number of different reactions. A small number of analyses supported the argument or any of its parts. We will single out exactly one such analysis (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37. Ante Rem Structuralism and the No-Naming Constraint.Teresa Kouri - 2016 - Philosophia Mathematica 24 (1):117-128.
    Tim Räz has presented what he takes to be a new objection to Stewart Shapiro's ante rem structuralism. Räz claims that ARS conflicts with mathematical practice. I will explain why this is similar to an old problem, posed originally by John Burgess in 1999 and Jukka Keränen in 2001, and show that Shapiro can use the solution to the original problem in Räz's case. Additionally, I will suggest that Räz's proposed treatment of the situation does not provide an argument for (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Mathematical Cultures: The London Meetings 2012--2014.Brendan Larvor (ed.) - 2016 - Springer International Publishing.
  39. Philosophy of Mathematics in the Twentieth Century: Selected Essays.Charles McCarty - 2016 - Philosophical Review Recent Issues 125 (2):298-302.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40. A Glimpse of Some Topics in Contemporary Philosophy of Mathematics: John P. Burgess: Rigor and Structure. Oxford University Press, 2015, 215 Pp, £35.00 HB. [REVIEW]Mark Zelcer - 2016 - Metascience 25 (1):147-150.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41. Philosophy of Mathematics in the Twentieth Century: Selected Essays.John P. Burgess - 2015 - History and Philosophy of Logic 36 (1):93-95.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  42. Carlo Cellucci. Rethinking Logic: Logic in Relation to Mathematics, Evolution and Method. Dordrecht: Springer, 2013. ISBN: 978-94-007-6090-5 ; 978-94-007-6091-2 . Pp. Xv + 389. [REVIEW]Emily R. Grosholz - 2015 - Philosophia Mathematica 23 (1):136-140.
  43. Uwagi o arytmetyce Grassmanna.Jerzy Hanusek - 2015 - Diametros 45:107-121.
    Hermann Grassmann’s 1861 work [2] was probably the first attempt at an axiomatic approach to arithmetic. The historical significance of this work is enormous, even though the set of axioms has proven to be incomplete. Basing on the interpretation of Grassmann’s theory provided by Hao Wang in [4], I present its detailed discussion, define the class of models of Grassmann’s arithmetic and discuss a certain axiom system for integers, modeled on Grassmann’s theory. At the end I propose to modify the (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44. Proof Phenomenon as a Function of the Phenomenology of Proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In Sebastian Luft & J. Tyler Friedman (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. De Gruyter. pp. 31-64.
  46. Cracow Circle and Its Philosophy of Logic and Mathematics.Roman Murawski - 2015 - Axiomathes 25 (3):359-376.
    The paper is devoted to the presentation and analysis of the philosophical views concerning logic and mathematics of the leading members of Cracow Circle, i.e., of Jan Salamucha, Jan Franciszek Drewnowski and Józef Maria Bocheński. Their views on the problem of possible applicability of logical tools in metaphysical and theological researches is also discussed.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Pavel Pudlák. Logical Foundations of Mathematics and Computational Complexity: A Gentle Introduction. Springer Monographs in Mathematics. Springer, 2013. ISBN: 978-3-319-00118-0 ; 978-3-319-00119-7 . Pp. Xiv + 695. [REVIEW]Alasdair Urquhart - 2015 - Philosophia Mathematica 23 (3):435-438.
  48. Completeness and the Ends of Axiomatization.Michael Detlefsen - 2014 - In Juliette Cara Kennedy (ed.), Interpreting Gödel. New York: Cambridge University Press. pp. 59-77.
    The type of completeness Whitehead and Russell aimed for in their Principia Mathematica was what I call descriptive completeness. This is completeness with respect to the propositions that have been proved in traditional mathematics. The notion of completeness addressed by Gödel in his famous work of 1930 and 1931 was completeness with respect to the truths expressible in a given language. What are the relative significances of these different conceptions of completeness for traditional mathematics? What, if any, effects does incompleteness (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Kurt Gödels mathematische Anschauung und John P. Burgess’ mathematische Intuition.Eva-Maria Engelen - 2014 - XXIII Deutscher Kongress Für Philosophie Münster 2014, Konferenzveröffentlichung.
    John P. Burgess kritisiert Kurt Gödels Begriff der mathematischen oder rationalen Anschauung und erläutert, warum heuristische Intuition dasselbe leistet wie rationale Anschauung, aber ganz ohne ontologisch überflüssige Vorannahmen auskommt. Laut Burgess müsste Gödel einen Unterschied zwischen rationaler Anschauung und so etwas wie mathematischer Ahnung, aufzeigen können, die auf unbewusster Induktion oder Analogie beruht und eine heuristische Funktion bei der Rechtfertigung mathematischer Aussagen einnimmt. Nur, wozu benötigen wir eine solche Annahme? Reicht es nicht, wenn die mathematische Intuition als Heuristik funktioniert? Für (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  50. Wittgenstein’s Philosophy of Mathematics: Felix Mühlhölzer in Conversation with Sebastian Grève.Felix Mühlhölzer - 2014 - Nordic Wittgenstein Review 3 (2):151-180.
    Sebastian Grève interviews Felix Mühlhölzer on his work on the philosophy of mathematics.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 460