This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related

Contents
486 found
Order:
1 — 50 / 486
  1. Contradictions inherent in special relativity: Space varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on this will (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. 3. Simulating gravity via Planck scale n-body particle-particle orbital pairs.Malcolm J. Macleod - manuscript
    An orbital simulation program is described that uses a geometrical approach to modeling gravitational and atomic orbits at the Planck scale. Orbiting objects A, B, C... are sub-divided into points, each point representing 1 unit of Planck mass, for example, a 1kg satellite would divide into 1kg/Planck mass = 45940509 points. Each point in object A then forms a rotating orbital pair with every corresponding point in objects B, C... resulting in a universe-wide, n-body network of rotating point-to-point orbital pairs. (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Is Euclid's proof of the infinitude of prime numbers tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of the proof of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Phenomenology and Philosophy of Mathematics.Roman Murawski - unknown - Poznan Studies in the Philosophy of the Sciences and the Humanities 98:135-146.
  5. On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
  7. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8. Mark Yakovlevich Vygodsky's Anniversary: Key Facts of the Biography and the List of His Key Publications.Oleg Gurov - 2023 - Artificial Societies 18 (3).
    The year 2023 celebrates the 125th anniversary of the birth of Mark Yakovlevich Vygodsky, a famous Soviet mathematician and pedagogue, one of the founders of the Soviet school of the history of mathematics. Not only the scientist's scientific achievements, but also his significant contribution to pedagogical theory and practice, allow us to describe him as a significant scientific figure of the twentieth century. His mathematics textbooks and reference books are reprinted almost annually, so that his ideas continue to influence educational (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  9. Can We Identify the Theorem in Metaphysics 9, 1051a24-27 with Euclid’s Proposition 32? Geometric Deductions for the Discovery of Mathematical Knowledge.Francisco Miguel Ortiz Delgado - 2023 - Tópicos: Revista de Filosofía 33 (66):41-65.
    This paper has two specific goals. The first is to demonstrate that the theorem in MetaphysicsΘ 9, 1051a24-27 is not equiva-lent to Euclid’s Proposition 32 of book I (which contradicts some Aristotelian commentators, such as W. D. Ross, J. L. Heiberg, and T. L. Heith). Agreeing with Henry Mendell’s analysis, I ar-gue that the two theorems are not equivalent, but I offer different reasons for such divergence: I propose a pedagogical-philosoph-ical reason for the Aristotelian theorem being shorter than the Euclidean (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. A Logical Foundation for Potentialist Set Theory.Sharon Berry - 2022 - Cambridge University Press.
    In many ways set theory lies at the heart of modern mathematics, and it does powerful work both philosophical and mathematical – as a foundation for the subject. However, certain philosophical problems raise serious doubts about our acceptance of the axioms of set theory. In a detailed and original reassessment of these axioms, Sharon Berry uses a potentialist approach to develop a unified determinate conception of set-theoretic truth that vindicates many of our intuitive expectations regarding set theory. Berry further defends (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  11. Descartes et ses mathématiques.Olivia Chevalier (ed.) - 2022 - Paris: Classiques Garnier.
    Dans cet ouvrage, il s'agira non seulement d'aborder différentes facettes de l'activité mathématique de Descartes, assez peu connues, mais également diverses dimensions de sa pensée mathématique.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  12. Ludwig Wittgenstein: writings on mathematics and logic, 1937-1944.Ludwig Wittgenstein - 2022 - New York, NY: Cambridge University Press. Edited by Victor Rodych & Timothy F. Pope.
    This five-volume German-English edition presents, for the first time, new translations of all of Wittgenstein's mature 1937-1944 writings on mathematics and logic. The first (1956) and third (1978) editions of Wittgenstein's Remarks on the Foundations of Mathematics omitted, unsystematically, more than half of Wittgenstein's later writings on mathematics; for that reason, the reader will here read some entire manuscripts for the first time, and other manuscripts for the first time as unabridged, sustained pieces of writing. Philosophers and other interested readers (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Explanations of Physical Phenomena.Sorin Bangu - 2021 - Australasian Journal of Philosophy 99 (4):669-682.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Towards a new philosophical perspective on Hermann Weyl’s turn to intuitionism.Kati Kish Bar-On - 2021 - Science in Context 34 (1):51-68.
    The paper explores Hermann Weyl’s turn to intuitionism through a philosophical prism of normative framework transitions. It focuses on three central themes that occupied Weyl’s thought: the notion of the continuum, logical existence, and the necessity of intuitionism, constructivism, and formalism to adequately address the foundational crisis of mathematics. The analysis of these themes reveals Weyl’s continuous endeavor to deal with such fundamental problems and suggests a view that provides a different perspective concerning Weyl’s wavering foundational positions. Building on a (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  17. The Role of Mathematical Tools in Scientific Phenomenon Explanation–A Guarantee of Reliability or a Pillar of False Credibility?Vladimir Drekalović - 2020 - Filosofija. Sociologija 31 (1).
    Ever since its beginnings, mathematics has occupied a special position among all sciences, natural, as well as social sciences and humanities. It has not only provided a role model in terms of methodology, particularly when it comes to natural sciences, but other sciences have always relied on mathematics extensively both in their development and for solving various open questions. The beginning of the 21st century foregrounded the issue of the so-called explanatory role of mathematics in science. However, the reference literature (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  18. Cosa significano Paraconsistente, Indecifrabile, Casuale, Calcolabile e Incompleto? Una recensione di Godel's Way: sfrutta in un mondo indecidibile (Godel's Way: Exploits into an Undecidable World) di Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (rivisto 2019).Michael Richard Starks - 2020 - In Benvenuti all'inferno sulla Terra: Bambini, Cambiamenti climatici, Bitcoin, Cartelli, Cina, Democrazia, Diversità, Disgenetica, Uguaglianza, Pirati Informatici, Diritti umani, Islam, Liberalismo, Prosperità, Web, Caos, Fame, Malattia, Violenza, Intellige. Las Vegas, NV USA: Reality Press. pp. 163-176.
    Nel 'Godel's Way' tre eminenti scienziati discutono questioni come l'indecidibilità, l'incompletezza, la casualità, la computabilità e la paracoerenza. Affronto questi problemi dal punto di vista di Wittgensteinian che ci sono due questioni fondamentali che hanno soluzioni completamente diverse. Ci sono le questioni scientifiche o empiriche, che sono fatti sul mondo che devono essere studiati in modo osservante e filosofico su come il linguaggio può essere usato in modo intelligibilmente (che include alcune domande in matematica e logica), che devono essere decise (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  19. Обзор “Я странная петля” (I Am a Strange Loop) by Douglas Hofstadter (2007) (обзор пересмотрен 2019).Michael Richard Starks - 2020 - In ДОБРО ПОЖАЛОВАТЬ В АД НА НАШЕМ МИРЕ. Las Vegas, NV USA: Reality Press. pp. 111-128.
    Последняя проповедь из Церкви фундаменталистского натурализма пастора Хофштадтера. Как и его гораздо более известный (или печально известный своими неустанными философскими ошибками) работа Годеля, Эшера, Баха, он имеет поверхностную правдоподобность, но если понять, что это безудержный саентизм, который смешивает реальные научные вопросы с философскими (т.е. единственными реальными вопросами являются то, что языковые игры мы должны играть), то почти все его интерес исчезает. Я предоставляю основу для анализа, основанного на эволюционной психологии и работе Витгенштейна (с тех пор, как он был обновлен в (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  20. のレビュー"「理由の外側の限界"」(The Outer Limits of Reason) by Noson Yanofsky (2019年改訂レビュー).Michael Richard Starks - 2020 - In 地獄へようこそ : 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV USA: Reality Press. pp. 178-192.
    ノソン・ヤノフスキーの「理性の外側の限界」を、ウィトゲンシュタインと進化心理学の統一的な視点から詳しくレビューします。私は、言語や数学のパラドックス、不完全さ、デデシッド性、コンピュータとしての脳、宇 宙などの問題の難しさは、すべて適切な文脈での言語の使用を注意深く見なさなかったことから生じるため、科学的事実の問題を言語の仕組みの問題から切り離すことができなかったことを示しています。私は、不完全さ、 パラタンシ、不整合性に関するヴィトゲンシュタインの見解と、計算の限界に関するウォルパートの仕事について議論します。要約すると:ブルックリンによると宇宙---良い科学、それほど良い哲学ではありません。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます。 .
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  21. मैं डगलस Hofstadter (2007) द्वारा एक अजीब लू प हूँ की समीक्षा--Review of I Am a Strange Loop by Douglas Hofstadter.Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 130-150.
    पादरी Hofstadter द्वारा कट्टरपंथी प्रकृतिवाद के चर्च से नवीनतम उपदेश. अपने बहुत अधिक प्रसिद्ध (या अपने अथक दार्शनिक त्रुटियों के लिए कुख्यात) काम Godel, Escher, बाख की तरह, यह एक सतही प्रशंसनीयता है, लेकिन अगर एक समझता है कि यह बड़े पैमाने पर वैज्ञानिकता है जो दार्शनिक लोगों के साथ वास्तविक वैज्ञानिक मुद्दों घोला जा सकता है (यानी, केवल असली मुद्दों क्या भाषा का खेल हम खेलना चाहिए रहे हैं) तो लगभग सभी अपनी रुचि गायब हो जाता है. मैं विकासवादी (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  22. (1 other version)असंभव, अपूर्णता, अपूर्णता, झूठा विरोधाभास, सिद्धांतवाद, गणना की सीमा, एक गैर-क्वांटम यांत्रिक अनिश्चितता सिद्धांत और कंप्यूटर के रूप में ब्रह्मांड पर Wolpert, Chaitin और Wittgenstein ट्यूरिंग मशीन थ्योरी में अंतिम प्रमेय --Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (संशोधित 2019).Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 215-220.
    मैं कंप्यूटर के रूप में गणना और ब्रह्मांड की सीमा के कई हाल ही में चर्चा पढ़ लिया है, polymath भौतिक विज्ञानी और निर्णय सिद्धांतकार डेविड Wolpert के अद्भुत काम पर कुछ टिप्पणी खोजने की उम्मीद है, लेकिन एक भी प्रशस्ति पत्र नहीं मिला है और इसलिए मैं यह बहुत संक्षिप्त मौजूद सारांश. Wolpert कुछ आश्चर्यजनक असंभव या अधूरापन प्रमेयों साबित कर दिया (1992 से 2008-देखें arxiv dot org) अनुमान के लिए सीमा पर (कम्प्यूटेशन) कि इतने सामान्य वे गणना कर (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  23. 私は奇妙なループです」のレビュー(I am a Strange Loop) by Douglas Hofstadter (2007) (レビュー改訂2019).Michael Richard Starks - 2020 - In 地獄へようこそ : 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV USA: Reality Press. pp. 102-118.
    ホフスタッター牧師による原理主義自然主義教会からの最新の説教。彼のはるかに有名な(または容赦ない哲学的誤りで悪名高い)作品ゴーデル、エッシャー、バッハのように、それは表面的な妥当性を持っていますが、こ れが哲学的なものと実際の科学的問題を混ぜ合わせた横行するサイエンティズムであることを理解すれば(つまり、唯一の本当の問題は、私たちがプレイすべき言語ゲームです)、その後、ほとんどすべての関心が消えます 。進化心理学とヴィトゲンシュタインの仕事に基づく分析のフレームワークを提供しています(最近の著作で更新されて以来)。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます .
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  24. (1 other version)Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter (2007) (reseña revisado 2019).Michael Richard Starks - 2020 - In Michael Starks (ed.), Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política, Economía, Historia y Literatura - Artículos y reseñas 2006-2019. Las Vegas, NV USA: Reality Press. pp. 265-282.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  25. Noson Yanofsky 403p (2013) द्वारा 'कारण की बाहरी सीमा' की समीक्षा Review of 'The Outer Limits of Reason' by Noson Yanofsky (संशोधित 2019).Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 221-238.
    मैं Wittgenstein और विकासवादी मनोविज्ञान के एक एकीकृत परिप्रेक्ष्य से Noson Yanofsky द्वारा 'कारण की बाहरी सीमा' की एक विस्तृत समीक्षा दे. मैं संकेत मिलता है कि भाषा और गणित में विरोधाभास के रूप में इस तरह के मुद्दों के साथ कठिनाई, अपूर्णता, अनिर्णयीयता, computability, मस्तिष्क और कंप्यूटर आदि के रूप में ब्रह्मांड, सभी विफलता से उठता है उचित में भाषा के हमारे उपयोग को ध्यान से देखने के लिए संदर्भ और इसलिए कैसे भाषा काम करता है के मुद्दों से (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  26. 《我是一个奇怪的循环》的回顾由道格拉斯·霍夫施塔特 (2007)(Review of I Am a Strange Loop by Douglas Hofstadter (2007)) (审查修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 105-120.
    霍夫施塔特牧师从原教旨主义自然主义教会的最新讲道。像他更出名(或臭名昭著的无情的哲学错误)的工作戈德尔,埃舍尔,巴赫,它有一个肤浅的合理性,但如果人们明白,这是猖獗的科学主义,混合真正的科学问题与哲学 问题(即,只有真正的问题是我们应该玩什么语言游戏),然后几乎所有的兴趣消失。我提供了一个基于进化心理学和维特根斯坦工作的分析框架(自从我最近的著作中更新)。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、心神 (Mind) 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019).
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  27. 一致性、不可解释、随机性、可估计和不完整意味着什么?戈德尔之路回顾:格雷戈里·柴丁、弗朗西斯科·阿·多里亚、牛顿·达·科斯塔160p(2012年)的《开发进入一个无法辨认的世界》(What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012)) (2019年修订版).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 159-172.
    在《哥德尔之路》中,三位杰出的科学家讨论了不可解性、不完整性、随机性、可估计性和副一致性等问题。我从维特根斯坦的观点出发来处理这些问题,即有两个基本问题有着完全不同的解决方案。有科学或经验问题,这是关 于世界的事实,需要研究观察和哲学问题,如何使用语言可理解(其中包括数学和逻辑中的某些问题),需要通过查看我们在特定上下文中实际使用单词的方式来决定。当我们清楚要玩哪种语言游戏时,这些话题就像其他话题一 样被视为普通的科学和数学问题。维特根斯坦的见解很少被平等,也从未被超越,今天和80年前他口述《蓝书》和《棕色书》时一样具有现实意义。尽管它的失败——实际上是一系列笔记,而不是一本已完成的书——这是这三 位著名学者作品的独特来源,他们半个多世纪以来一直在物理学、数学和哲学的流血边缘工作。达科斯塔和多里亚被沃尔珀特引用(见下文或我的文章沃尔珀特和我对亚诺夫斯基的"理性的外在极限"的评 论),因为他们写了通用计算,在他的许多成就中,达科斯塔是先驱参数一致性。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019) .
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  28. Was bedeuten Parakonsistente, Unentscheidbar, Zufällig, Berechenbar und Unvollständige? Eine Rezension von „Godels Weg: Exploits in eine unentscheidbare Welt“ (Godels Way: Exploits into a unecidable world) von Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 1171-185.
    In "Godel es Way" diskutieren drei namhafte Wissenschaftler Themen wie Unentschlossenheit, Unvollständigkeit, Zufälligkeit, Berechenbarkeit und Parakonsistenz. Ich gehe diese Fragen aus Wittgensteiner Sicht an, dass es zwei grundlegende Fragen gibt, die völlig unterschiedliche Lösungen haben. Es gibt die wissenschaftlichen oder empirischen Fragen, die Fakten über die Welt sind, die beobachtungs- und philosophische Fragen untersuchen müssen, wie Sprache verständlich verwendet werden kann (die bestimmte Fragen in Mathematik und Logik beinhalten), die entschieden werden müssen, indem man sich anschaut,wie wir Wörter in bestimmten (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  29. 诺森·亚诺夫斯基《理性外在极限》回顾403p (2013) (Review of 'The Outer Limits of Reason' by Noson Yanofsky 403p (2013)) (修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 178-191.
    我从维特根斯坦和进化心理学的统一视角,对诺森·亚诺夫斯基的《理性的外在极限》进行了详细的回顾。我指出,语言和数学悖论、不完整、不可定定、可计算性、大脑和宇宙作为计算机等问题的困难,都源于未能在适当的方 面仔细审视我们使用语言的问题。上下文,因此未能将科学事实问题与语言如何工作的问题分开。我讨论了维特根斯坦对不完整、不一致性和不可解释性的看法,以及沃尔珀特对计算极限的工作。总结一下:根据布鲁克林--- 良好的科学,不是那么好的哲学的宇宙。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019).
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  30. Takeuti's proof theory in the context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Axioms in Frege.Patricia A. Blanchette - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press.
  32. Mathematical Explanation as Part of an (Im) perfect Scientific Explanation: An Analysis of Two Examples.Vladimir Drekalović - 2019 - Filozofia Nauki 28 (4):23-41.
    Alan Baker argues that mathematical objects play an indispensable explanatory role in science. There are several examples cited in the literature as solid candidates for such a role. We discuss two such examples and show that they are very different in their strength and (im)perfection, although both are recognized by the scientific community as examples of the best scientific explanations of particular phenomena. More specifically, it will be shown that the explanation of the cicada case has serious shortcomings compared with (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. Development and Validation of the Mathematics Attitude Scale (MAS) for High School Students in Southern Philippines.Elmark Facultad & Starr Clyde Sebial - 2019 - International Journal of Innovation, Creativity and Change 8 (2):146-168.
    This study developed an instrument that measures the attitude of Filipino high school students towards mathematics, with reliable predictors and factors. Using the responses of 300 high school students from Zamboanga Sibugay, the validity and reliability of the Mathematics Attitude Scale (MAS) was tested using Exploratory Factor Analysis (EFA) and reliability analyses. The EFA showed that four-factor structures of the instrument, regarding the mathematics attitude for high school students, explained 27.48% of the variance in the pattern of relationships among the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Philosophie I Maximen 0 / Philosophy I Maxims 0: Philosophische Notizbücher Band 1 / Philosophical Notebooks Volume 1.Kurt Gödel - 2019 - Berlin / Boston: De Gruyter.
    Over a period of 22 years (1934-1955), the mathematician Kurt Gödel wrote down a series of philosophical reflections, the so-called Philosophical Remarks (Max Phil). They have been handed down in 15 notebooks written in Gabelsberg shorthand. The first notebook contains general philosophical reflections. Notebooks two and three consist of Gödel's individual ethics. The notebooks that follow clearly show that Gödel had designed a philosophy of science in which he placed his discussions of physics, psychology, biology, mathematics, language, theology, and history (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. When logic gives out : Frege on basic logical laws.Walter B. Pedriali - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press.
  36. (1 other version)How to Frame a Mathematician.Bernhard Schröder, Martin Schmitt, Deniz Sarikaya & Bernhard Fisseni - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag.
    Frames are a concept in knowledge representation that explains how the receiver, using background information, completes the information conveyed by the sender. This concept is used in different disciplines, most notably in cognitive linguistics and artificial intelligence. This paper argues that frames can serve as the basis for describing mathematical proofs. The usefulness of the concept is illustrated by giving a partial formalisation of proof frames, specifically focusing on induction proofs, and relevant parts of the mathematical theory within which the (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   3 citations  
  37. (1 other version)How to Frame a Mathematician.Bernhard Schröder, Martin Schmitt, Deniz Sarikaya & Bernhard Fisseni - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 417-436.
    Frames are a concept in knowledge representation that explains how the receiver, using background information, completes the information conveyed by the sender. This concept is used in different disciplines, most notably in cognitive linguistics and artificial intelligence. This paper argues that frames can serve as the basis for describing mathematical proofs. The usefulness of the concept is illustrated by giving a partial formalisation of proof frames, specifically focusing on induction proofs, and relevant parts of the mathematical theory within which the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. Pernyataan tentang kemustahilan, ketidaklengkapan, Paraconsistency,Undecidability, Randomness, Komputabilitas, paradoks, dan ketidakpastian dalam Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock dan Yanofsky.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak ada dalam Umum. Saya menyarankan bahwa mereka sebagian besar masalah filosofis standar (yaitu, Permainan bahasa) yang sebagian besar diselesaikan oleh Wittgenstein lebih dari 80years yang lalu. -/- "Apa yang kita ' tergoda untuk mengatakan ' dalam kasus seperti ini, tentu saja, bukan filsafat, tetapi bahan baku. Jadi, misalnya, apa yang seorang matematikawan cenderung mengatakan (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  39. (1 other version)Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter.Michael Richard Starks - 2019 - In OBSERVACIONES SOBRE IMPOSIBILIDAD, INCOMPLETA, PARACOHERENCIA,INDECISIÓN,ALEATORIEDAD, COMPUTABILIDAD, PARADOJA E INCERTIDUMBRE EN CHAITIN, WITTGENSTEIN, HOFSTADTER, WOLPERT, DORIA, DACOSTA, GODEL, SEARLE, RODYCH, BERTO,FLOYD, MOYAL-SHARROCK Y YANOFSKY. Reality Press. pp. 21-43.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  40. Замечания о невозможности, неполноте Paraconsistency, Нерешающость, Случайность вычислительности, парадокс, и неопределенность в Чайтин, Витгенштейн, Хофштадтер Вольперт, Дориа, да Коста, Годель, Сирл, Родыч Берто, Флойд, Мойал-Шаррок и Янофски.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    Принято считать, что невозможность, неполнота, Парапоследовательность, Несоответствие, Случайность, вычислительность, парадокс, неопределенность и пределы разума являются разрозненными научными физическими или математическими вопросами, имеющими мало или ничего общего. Я полагаю, что они в значительной степени стандартные философские проблемы (т.е. языковые игры), которые были в основном решены Витгенштейном более 80 лет назад. -/- Я предоставляю краткое резюме некоторых из основных выводов двух из самых выдающихся студентов поведения о Fсовременности, Людвиг Витгенштейн и Джон Сирл, на логическую структуру преднамеренности (ум, язык, поведение), принимая в качестве (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  41. اظهارات در مورد عدم امکان ، بی کامل بودن ، پاراستشتها، Undecidability ، اتفاقی ، Computability ، پارادوکس ، و عدم قطعیت در Chaitin ، ویتگنشتاین ، Hofstadter ، Wolpert ، doria ، دا کوستا ، گودل ، سرل ، رودیچ ، برتو ، فلوید ، مویال-شرراک و یانفسکی.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    معمولا تصور می شود که عدم امکان ، بی کامل بودن ، پارامونشتها ، Undecidability ، اتفاقی ، قابلیت های مختلف ، پارادوکس ، عدم قطعیت و محدودیت های دلیل ، مسائل فیزیکی و ریاضی علمی و یا با داشتن کمی یا هیچ چیز در مشترک. من پیشنهاد می کنم که آنها تا حد زیادی مشکلات فلسفی استاندارد (به عنوان مثال ، بازی های زبان) که عمدتا توسط ویتگنشتاین بیش از 80 سال پیش حل و فصل شد. -/- "آنچه ما (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  42. असंभव, अपूर्णता, अनिर्णय, अनिर्णय, यादृच्छिकता, गणना, विरोधाभास, और चैटिन, विटगेनस्टीन, Hofstadter, Wolpert, डोरिया, दा कोस्टा, गोडेल, सीरले, Rodych, Berto, Floyd में अनिश्चितता पर टिप्पणी मोयाल-शररॉक और यानोफ्स्की.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    यह आमतौर पर सोचा जाता है कि असंभवता, अपूर्णता, Paraconsistency, अनिर्णितता, Randomness, Computability, विरोधाभास, अनिश्चितता और कारण की सीमा अलग वैज्ञानिक शारीरिक या गणितीय मुद्दों में कम या कुछ भी नहीं कर रहे हैं आम. मेरा सुझाव है कि वे काफी हद तक मानक दार्शनिक समस्याओं (यानी, भाषा का खेल) जो ज्यादातर 80years पहले Wittgenstein द्वारा हल किए गए थे. -/- "क्या हम 'इस तरह के एक मामले में कहने के लिए' कर रहे हैं, ज़ाहिर है, दर्शन नहीं है, लेकिन (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  43. ملاحظات على استحالة, عدم اكتمال, بارااتساق,عدم تحديد, عشوائية, الحوسبة, مفارقة, وعدم اليقين في Chaitin, Wittgenstein, Hofstadter, Wolpert, دوريا, دا كوستا, جوديل, سيرل, روديش, بيرتو, فلويد, مويال شاروك ويانوفسكي.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    ويعتقد عادة أن الاستحالة، وعدم اكتمال، وParaconsistency، وعدم تحديد، العشوائية، والحوسبة، والمفارقة، وعدم اليقين وحدود العقل هي قضايا علمية مادية أو رياضية متباينة وجود القليل أو لا شيء في المشتركه. أقترح أنها مشاكل فلسفية قياسية إلى حد كبير (أي ألعاب اللغة) التي تم حلها في الغالب من قبل فيتغنشتاين أكثر من 80years منذ. -/- "إن ما نميل إلى قوله في مثل هذه الحالة هو، بطبيعة الحال، ليس فلسفة، ولكنه مادة خام. وهكذا، على سبيل المثال، ما يميل عالم الرياضيات إلى قوله (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  44. On the alleged simplicity of impure proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. Springer. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Is Mathematics Problem Solving or Theorem Proving?Carlo Cellucci - 2017 - Foundations of Science 22 (1):183-199.
    The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Varieties of Maverick Philosophy of Mathematics.Carlo Cellucci - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 223-251.
    Reuben Hersh is a champion of maverick philosophy of mathematics. He maintains that mathematics is a human activity, intelligible only in a social context; it is the subject where statements are capable in principle of being proved or disproved, and where proof or disproof bring unanimous agreement by all qualified experts; mathematicians' proof is deduction from established mathematics; mathematical objects exist only in the shared consciousness of human beings. In this paper I describe my several points of agreement and few (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Can Arguments of Formal Naturalism be used to Show that the Mathematical Explanation is Indispensable in Science?Vladimir Drekalović - 2016 - Filozofska Istrazivanja 36 (3):545-559.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49. Ante Rem Structuralism and the No-Naming Constraint.Teresa Kouri - 2016 - Philosophia Mathematica 24 (1):117-128.
    Tim Räz has presented what he takes to be a new objection to Stewart Shapiro's ante rem structuralism. Räz claims that ARS conflicts with mathematical practice. I will explain why this is similar to an old problem, posed originally by John Burgess in 1999 and Jukka Keränen in 2001, and show that Shapiro can use the solution to the original problem in Räz's case. Additionally, I will suggest that Räz's proposed treatment of the situation does not provide an argument for (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Mathematical Cultures: The London Meetings 2012-2014.Brendan Larvor (ed.) - 2016 - Springer International Publishing.
    This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education.​ Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
1 — 50 / 486