We study connections between classical asymptotic density, computability and computable enumerability. In an earlier paper, the second two authors proved that there is a computably enumerable set A of density 1 with no computable subset of density 1. In the current paper, we extend this result in three different ways: The degrees of such sets A are precisely the nonlow c.e. degrees. There is a c.e. set A of density 1 with no computable subset of nonzero density. There is a (...) c.e. set A of density 1 such that every subset of A of density 1 is of high degree. We also study the extent to which c.e. sets A can be approximated by their computable subsets B in the sense that A\B has small density. There is a very close connection between the computational complexity of a set and the arithmetical complexity of its density and we characterize the lower densities, upper densities and densities of both computable and computably enumerable sets. We also study the notion of "computable at density r" where r is a real in the unit interval. Finally, we study connections between density and classical smallness notions such as immunity, hyperimmunity, and cohesiveness. (shrink)
Schnorr randomness is a notion of algorithmic randomness for real numbers closely related to Martin-Löf randomness. After its initial development in the 1970s the notion received considerably less attention than Martin-Löf randomness, but recently interest has increased in a range of randomness concepts. In this article, we explore the properties of Schnorr random reals, and in particular the c.e. Schnorr random reals. We show that there are c.e. reals that are Schnorr random but not Martin-Löf random, and provide a new (...) characterization of Schnorr random real numbers in terms of prefix-free machines. We prove that unlike Martin-Löf random c.e. reals, not all Schnorr random c.e. reals are Turing complete, though all are in high Turing degrees. We use the machine characterization to define a notion of "Schnorr reducibility" which allows us to calibrate the Schnorr complexity of reals. We define the class of "Schnorr trivial" reals, which are ones whose initial segment complexity is identical with the computable reals, and demonstrate that this class has non-computable members. (shrink)
We solve a problem posed by Goncharov and Knight 639–681, 757]). More specifically, we produce an effective Friedberg enumeration of computable equivalence structures, up to isomorphism. We also prove that there exists an effective Friedberg enumeration of all isomorphism types of infinite computable equivalence structures.
We study completely decomposable torsion-free abelian groups of the form $\mathcal{G}_S := \oplus_{n \in S} \mathbb{Q}_{p_n}$ for sets $S \subseteq \omega$. We show that $\mathcal{G}_S$has a decidable copy if and only if S is $\Sigma^0_2$and has a computable copy if and only if S is $\Sigma^0_3$.
We develop a theory of LOGSPACE structures and apply it to construct a number of examples of Abelian Groups which have LOGSPACE presentations. We show that all computable torsion Abelian groups have LOGSPACE presentations and we show that the groups ${\mathbb {Z}, Z(p^{\infty})}$ , and the additive group of the rationals have LOGSPACE presentations over a standard universe such as the tally representation and the binary representation of the natural numbers. We also study the effective categoricity of such groups. For (...) example, we give conditions are given under which two isomorphic LOGSPACE structures will have a linear space isomorphism. (shrink)
We solve a longstanding question of Rosenstein, and make progress toward solving a longstanding open problem in the area of computable linear orderings by showing that every computable ƞ-like linear ordering without an infinite strongly ƞ-like interval has a computable copy without nontrivial computable self-embedding. The precise characterization of those computable linear orderings which have computable copies without nontrivial computable self-embedding remains open.
We describe new results in parametrized complexity theory. In particular, we prove a number of concrete hardness results for W[P], the top level of the hardness hierarchy introduced by Downey and Fellows in a series of earlier papers. We also study the parametrized complexity of analogues of PSPACE via certain natural problems concerning k-move games. Finally, we examine several aspects of the structural complexity of W [P] and related classes. For instance, we show that W[P] can be characterized in terms (...) of the DTIME ) and NP. (shrink)
The Dushnik–Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine computability-theoretical aspects of this classical theorem.
We study the complexity of (finitely-valued and transfinitely-valued) Euclidean functions for computable Euclidean domains. We examine both the complexity of the minimal Euclidean function and any Euclidean function. Additionally, we draw some conclusions about the proof-theoretical strength of minimal Euclidean functions in terms of reverse mathematics.
Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c = (a ⋃ c) ⋂ (b ⋃ c), a ⋃ c | b ⋃ c, and c < a ⋃ b.
. A completeness theory for parameterized computational complexity has been studied in a series of recent papers, and has been shown to have many applications in diverse problem domains including familiar graph-theoretic problems, VLSI layout, games, computational biology, cryptography, and computational learning [ADF,BDHW,BFH, DEF,DF1-7,FHW,FK]. We here study the parameterized complexity of two kinds of problems: problems concerning parameterized computations of Turing machines, such as determining whether a nondeterministic machine can reach an accept state in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...) \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} steps, and problems concerning derivations and factorizations, such as determining whether a word \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $x$\end{document} can be derived in a grammar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} steps, or whether a permutation has a factorization of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} over a given set of generators. We show hardness and completeness for these problems for various levels of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W$\end{document} hierarchy. In particular, we show that Short TM Computation is complete for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W[1]$\end{document}. This gives a new and useful characterization of the most important of the apparently intractable parameterized complexity classes. (shrink)
Many natural computational problems have input consisting of two or more parts, one of which may be considered a parameter. For example, there are many problems for which the input consists of a graph and a positive integer. A number of results are presented concerning parameterized problems that can be solved in complexity classes below P, given a single word of advice for each parameter value. Different ways in which the word of advice can be employed are considered, and it (...) is shown that the class FPT of tractable parameterized problems has interesting and natural internal structure. (shrink)
We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That is, if a is 2-generic, and $0 < {\bf{b}} < {\bf{a}}$, then there is a 2-generic g with $0 < {\bf{g}} < {\bf{b}}.$ In the case of 1-generic degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from a 1-generic degree. We explore the tightness of these results.We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from a weakly 2-generic (...) one. While there have been full approximation constructions of ${\rm{\Delta }}_3^0$ minimal degrees before, our proof is rather novel since it is a computable full approximation construction where both the generic and the minimal degrees are ${\rm{\Delta }}_3^0 - {\rm{\Delta }}_2^0$. (shrink)
In [Countable thin [Formula: see text] classes, Ann. Pure Appl. Logic 59 79–139], Cenzer, Downey, Jockusch and Shore proved the density of degrees containing members of countable thin [Formula: see text] classes. In the same paper, Cenzer et al. also proved the existence of degrees containing no members of thin [Formula: see text] classes. We will prove in this paper that the c.e. degrees containing no members of thin [Formula: see text] classes are dense in the c.e. degrees. We will (...) also prove that the c.e. degrees containing members of thin [Formula: see text] classes are dense in the c.e. degrees, improving the result of Cenzer et al. mentioned above. Thus, we obtain a new natural subclass of c.e. degrees which are both dense and co-dense in the c.e. degrees, while the other such class is the class of branching c.e. degrees 113–130] for nonbranching degrees and [T. A. Slaman, The density of infima in the recursively enumerable degrees, Ann. Pure Appl. Logic 52 155–179] for branching degrees). (shrink)
This work contributes to the program of studying effective versions of “almost-everywhere” theorems in analysis and ergodic theory via algorithmic randomness. Consider the setting of Cantor space {0,1}N with the uniform measure and the usual shift. We determine the level of randomness needed for a point so that multiple recurrence in the sense of Furstenberg into effectively closed sets P of positive measure holds for iterations starting at the point. This means that for each k∈N there is an n such (...) that n,2n,…,kn shifts of the point all end up in P. We consider multiple recurrence into closed sets that possess various degrees of effectiveness: clopen, Π10 with computable measure, and Π10. The notions of Kurtz, Schnorr, and Martin-Löf randomness, respectively, turn out to be sufficient. We obtain similar results for multiple recurrence with respect to the k commuting shift operators on {0,1}Nk. (shrink)
Answering a question of Per Lindström, we show that there is no “plus-capping” degree, i.e. that for any incomplete r.e. degreew, there is an incomplete r.e. degreea>w such that there is no r.e. degreev>w witha∩v=w.