Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of Physics.Elise M. Crull - 2013 - Analysis 73 (4):771-784.
  • Boltzmann's H-theorem, its discontents, and the birth of statistical mechanics.Harvey R. Brown, Wayne Myrvold & Jos Uffink - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):174-191.
  • In Search of Time Lost: Asymmetry of Time and Irreversibility in Natural Processes. [REVIEW]A. L. Kuzemsky - 2020 - Foundations of Science 25 (3):597-645.
    In this survey, we discuss and analyze foundational issues of the problem of time and its asymmetry from a unified standpoint. Our aim is to discuss concisely the current theories and underlying notions, including interdisciplinary aspects, such as the role of time and temporality in quantum and statistical physics, biology, and cosmology. We compare some sophisticated ideas and approaches for the treatment of the problem of time and its asymmetry by thoroughly considering various aspects of the second law of thermodynamics, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Statistical Mechanical Imperialism.Brad Weslake - 2014 - In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press. pp. 241-257.
    I argue against the claim, advanced by David Albert and Barry Loewer, that all non-fundamental laws can be derived from those required to underwrite the second law of thermodynamics.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Minkowski space-time and thermodynamics.Friedel Weinert - unknown
    The purpose of this paper is twofold: a) to explore the compatibility of Minkowski’s space-time representation of the Special theory of relativity with a dynamic conception of space-time; b) to locate its roots in invariant features - like entropic relations - of the propagation of signals in space-time. From its very beginning Minkowski’s four-dimensional space-time was associated with a static view of reality, e.g. a block universe. Einstein added his influential voice to this conception when he wrote: ‘From a “happening” (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Continuity, causality and determinism in mathematical physics: from the late 18th until the early 20th century.Marij van Strien - 2014 - Dissertation, University of Ghent
    It is commonly thought that before the introduction of quantum mechanics, determinism was a straightforward consequence of the laws of mechanics. However, around the nineteenth century, many physicists, for various reasons, did not regard determinism as a provable feature of physics. This is not to say that physicists in this period were not committed to determinism; there were some physicists who argued for fundamental indeterminism, but most were committed to determinism in some sense. However, for them, determinism was often not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Boltzmann's h-theorem, its limitations, and the birth of statistical mechanics.Harvey R. Brown & Wayne Myrvold - unknown
    A comparison is made of the traditional Loschmidt and Zermelo objections to Boltzmann's H-theorem, and its simplified variant in the Ehrenfests' 1912 wind-tree model. The little-cited 1896 objection of Zermelo is also analysed. Significant differences between the objections are highlighted, and several old and modern misconceptions concerning both them and the H-theorem are clarified. We give particular emphasis to the radical nature of Poincare's and Zermelo's attack, and the importance of the shift in Boltzmann's thinking in response to the objections (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark