Bell's inequalities, relativistic quantum field theory and the problem of hidden variables

Philosophy of Science 58 (4):628-638 (1991)
Based partly on proving that algebraic relativistic quantum field theory (ARQFT) is a stochastic Einstein local (SEL) theory in the sense of SEL which was introduced by Hellman (1982b) and which is adapted in this paper to ARQFT, the recently proved maximal and typical violation of Bell's inequalities in ARQFT (Summers and Werner 1987a-c) is interpreted in this paper as showing that Bell's inequalities are, in a sense, irrelevant for the problem of Einstein local stochastic hidden variables, especially if this problem is raised in connection with ARQFT. This leads to the question of how to formulate the problem of local hidden variables in ARQFT. By giving a precise definition of hidden-variable theory within the operator algebraic framework of quantum mechanics, it will be argued that the aim of hidden-variable investigations is to determine those classes of quantum theories whose elements represent a statistical content that cannot be reduced in a given way. In some particular way to be stated, a proposition will be stated which distinguishes quantum field theories whose statistical content cannot be reduced without violating some relativistic locality principle
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Jeremy Butterfield (2007). Stochastic Einstein Locality Revisited. British Journal for the Philosophy of Science 58 (4):805 - 867.
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    19 ( #74,831 of 1,088,832 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,832 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.