Switch to: References

Add citations

You must login to add citations.
  1. Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • AI as an Epistemic Technology.Ramón Alvarado - 2023 - Science and Engineering Ethics 29 (5):1-30.
    In this paper I argue that Artificial Intelligence and the many data science methods associated with it, such as machine learning and large language models, are first and foremost epistemic technologies. In order to establish this claim, I first argue that epistemic technologies can be conceptually and practically distinguished from other technologies in virtue of what they are designed for, what they do and how they do it. I then proceed to show that unlike other kinds of technology (_including_ other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning results (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Why There is no General Solution to the Problem of Software Verification.John Symons & Jack K. Horner - 2020 - Foundations of Science 25 (3):541-557.
    How can we be certain that software is reliable? Is there any method that can verify the correctness of software for all cases of interest? Computer scientists and software engineers have informally assumed that there is no fully general solution to the verification problem. In this paper, we survey approaches to the problem of software verification and offer a new proof for why there can be no general solution.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why There is no General Solution to the Problem of Software Verification.John Symons & Jack J. Horner - 2020 - Foundations of Science 25 (3):541-557.
    How can we be certain that software is reliable? Is there any method that can verify the correctness of software for all cases of interest? Computer scientists and software engineers have informally assumed that there is no fully general solution to the verification problem. In this paper, we survey approaches to the problem of software verification and offer a new proof for why there can be no general solution.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Epistemic injustice and data science technologies.John Symons & Ramón Alvarado - 2022 - Synthese 200 (2):1-26.
    Technologies that deploy data science methods are liable to result in epistemic harms involving the diminution of individuals with respect to their standing as knowers or their credibility as sources of testimony. Not all harms of this kind are unjust but when they are we ought to try to prevent or correct them. Epistemically unjust harms will typically intersect with other more familiar and well-studied kinds of harm that result from the design, development, and use of data science technologies. However, (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Islamic Philosophy and Artificial Intelligence: Epistemological Arguments.Biliana Popova - 2020 - Zygon 55 (4):977-995.
    This essay presents an analysis of different processes of machine learning: supervised, unsupervised, and semisupervised, through the prism of the epistemologies of several prominent Islamic philosophical schools. I discuss the way each school conceptualizes the ontological absolute (immortality, death, afterlife) and the way this shapes their respective epistemologies. I present an analysis of the different machine learning processes through the prism of the epistemological constructs of each of these philosophic traditions. I conclude with the argument that more scholars from the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Humanistic interpretation and machine learning.Juho Pääkkönen & Petri Ylikoski - 2021 - Synthese 199:1461–1497.
    This paper investigates how unsupervised machine learning methods might make hermeneutic interpretive text analysis more objective in the social sciences. Through a close examination of the uses of topic modeling—a popular unsupervised approach in the social sciences—it argues that the primary way in which unsupervised learning supports interpretation is by allowing interpreters to discover unanticipated information in larger and more diverse corpora and by improving the transparency of the interpretive process. This view highlights that unsupervised modeling does not eliminate the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Regimes of Evidence in Complexity Sciences.Fabrizio Li Vigni - 2021 - Perspectives on Science 29 (1):62-103.
    Since their inception in the 1980s, complexity sciences have been described as a revolutionary new domain of research. By describing some of the practices and assumptions of its representatives, the present article shows that this field is an association of subdisciplines laying on existing disciplinary footholds. The general question guiding us here is: On what basis do complexity scientists consider their inquiry methods and results as valuable? To answer it, I describe five “epistemic argumentative regimes,” namely the ways in which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Data and Model Operations in Computational Sciences: The Examples of Computational Embryology and Epidemiology.Fabrizio Li Vigni - 2022 - Perspectives on Science 30 (4):696-731.
    Computer models and simulations have become, since the 1960s, an essential instrument for scientific inquiry and political decision making in several fields, from climate to life and social sciences. Philosophical reflection has mainly focused on the ontological status of the computational modeling, on its epistemological validity and on the research practices it entails. But in computational sciences, the work on models and simulations are only two steps of a longer and richer process where operations on data are as important as, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • We Have No Satisfactory Social Epistemology of AI-Based Science.Inkeri Koskinen - forthcoming - Social Epistemology.
    In the social epistemology of scientific knowledge, it is largely accepted that relationships of trust, not just reliance, are necessary in contemporary collaborative science characterised by relationships of opaque epistemic dependence. Such relationships of trust are taken to be possible only between agents who can be held accountable for their actions. But today, knowledge production in many fields makes use of AI applications that are epistemically opaque in an essential manner. This creates a problem for the social epistemology of scientific (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding Error Rates in Software Engineering: Conceptual, Empirical, and Experimental Approaches.Jack K. Horner & John Symons - 2019 - Philosophy and Technology 32 (2):363-378.
    Software-intensive systems are ubiquitous in the industrialized world. The reliability of software has implications for how we understand scientific knowledge produced using software-intensive systems and for our understanding of the ethical and political status of technology. The reliability of a software system is largely determined by the distribution of errors and by the consequences of those errors in the usage of that system. We select a taxonomy of software error types from the literature on empirically observed software errors and compare (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Software engineering standards for epidemiological models.Jack K. Horner & John F. Symons - 2020 - History and Philosophy of the Life Sciences 42 (4):1-24.
    There are many tangled normative and technical questions involved in evaluating the quality of software used in epidemiological simulations. In this paper we answer some of these questions and offer practical guidance to practitioners, funders, scientific journals, and consumers of epidemiological research. The heart of our paper is a case study of the Imperial College London covid-19 simulator, set in the context of recent work in epistemology of simulation and philosophy of epidemiology.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemic issues in computational reproducibility: software as the elephant in the room.Alexandre Hocquet & Frédéric Wieber - 2021 - European Journal for Philosophy of Science 11 (2):1-20.
    Computational reproducibility possesses its own dynamics and narratives of crisis. Alongside the difficulties of computing as an ubiquitous yet complex scientific activity, computational reproducibility suffers from a naive expectancy of total reproducibility and a moral imperative to embrace the principles of free software as a non-negotiable epistemic virtue. We argue that the epistemic issues at stake in actual practices of computational reproducibility are best unveiled by focusing on software as a pivotal concept, one that is surprisingly often overlooked in accounts (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analysis of Beliefs Acquired from a Conversational AI: Instruments-based Beliefs, Testimony-based Beliefs, and Technology-based Beliefs.Ori Freiman - forthcoming - Episteme:1-17.
    Speaking with conversational AIs, technologies whose interfaces enable human-like interaction based on natural language, has become a common phenomenon. During these interactions, people form their beliefs due to the say-so of conversational AIs. In this paper, I consider, and then reject, the concepts of testimony-based beliefs and instrument-based beliefs as suitable for analysis of beliefs acquired from these technologies. I argue that the concept of instrument-based beliefs acknowledges the non-human agency of the source of the belief. However, the analysis focuses (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • The epistemological foundations of data science: a critical review.Luciano Floridi, Mariarosaria Taddeo, Vincent Wang, David Watson & Jules Desai - 2022 - Synthese 200 (6):1-27.
    The modern abundance and prominence of data have led to the development of “data science” as a new field of enquiry, along with a body of epistemological reflections upon its foundations, methods, and consequences. This article provides a systematic analysis and critical review of significant open problems and debates in the epistemology of data science. We propose a partition of the epistemology of data science into the following five domains: (i) the constitution of data science; (ii) the kind of enquiry (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.
    Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5).
    The use of black box algorithms in medicine has raised scholarly concerns due to their opaqueness and lack of trustworthiness. Concerns about potential bias, accountability and responsibility, patient autonomy and compromised trust transpire with black box algorithms. These worries connect epistemic concerns with normative issues. In this paper, we outline that black box algorithms are less problematic for epistemic reasons than many scholars seem to believe. By outlining that more transparency in algorithms is not always necessary, and by explaining that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  • Computer Simulations in Science.Eric Winsberg - forthcoming - Stanford Encyclopedia of Philosophy.