Results for 'Elementary Particles, Quantum Field Theory. '

1000+ found
Order:
  1.  24
    Lectures on Elementary Particles and Quantum Field Theory. 1. Lectures by Stephen L. Adler..Stanley Deser, Marc Grisaru & Hugh Pendleton (eds.) - 1970 - MIT Press.
    The first volume of the Brandeis University Summer Institute lecture series of 1970 on theories of interacting elementary particles, consisting of four sets of lectures. Every summer since 1959 Brandeis University has conducted a lecture series centered on various areas of theoretical physics. The areas are sufficiently broad to interest a large number of physicists and the lecturers are among the original explorers of these areas. The 1970 lectures, presented in two volumes, are on theories of interacting elementary (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. The Elementary Particles of Quantum Fields.Gregg Jaeger - 2021 - Entropy 11 (23):1416.
    The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in (...) field theory. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. Quantum Field Theory.Meinard Kuhlmann - 2012 - The Stanford Encyclopedia of Philosophy.
    Quantum Field Theory (QFT) is the mathematical and conceptual framework for contemporary elementary particle physics. In a rather informal sense QFT is the extension of quantum mechanics (QM), dealing with particles, over to fields, i.e. systems with an infinite number of degrees of freedom. (See the entry on quantum mechanics.) In the last few years QFT has become a more widely discussed topic in philosophy of science, with questions ranging from methodology and semantics to ontology. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   30 citations  
  4.  29
    The Transition from Quantum Field Theory to One-Particle Quantum Mechanics and a Proposed Interpretation of Aharonov–Bohm Effect.Benliang Li, Daniel W. Hewak & Qi Jie Wang - 2018 - Foundations of Physics 48 (7):837-852.
    In this article, we demonstrate a sense in which the one-particle quantum mechanics and the classical electromagnetic four-potential arise from the quantum field theory. In addition, the classical Maxwell equations are derived from the QFT scattering process, while both classical electromagnetic fields and potentials serve as mathematical tools to approximate the interactions among elementary particles described by QFT physics. Furthermore, a plausible interpretation of the Aharonov–Bohm effect is raised within the QFT framework. We provide a (...) treatment of the source of electromagnetic potentials and argue that the underlying mechanism in the AB effect can be understood via interactions among electrons described by QFT theory where the interactions are mediated by virtual photons. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5. Quantum Field Theory for Philosophers.Michael Redhead - 1982 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982:57 - 99.
    The metaphysical commitments of quantum field theory are examined. A thesis of underdetermination as between field and particle approaches to the "elementary particles" is argued for but only if a disputed notion of transcendental individuality is admitted. The superiority of the field approach is further emphasized in the context of heuristics.
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  6. How is Quantum Field Theory Possible?Sunny Y. Auyang - 1995 - New York: Oxford University Press.
    Quantum field theory (QFT) combines quantum mechanics with Einstein's special theory of relativity and underlies elementary particle physics. This book presents a philosophical analysis of QFT. It is the first treatise in which the philosophies of space-time, quantum phenomena, and particle interactions are encompassed in a unified framework. Describing the physics in nontechnical terms, and schematically illustrating complex ideas, the book also serves as an introduction to fundamental physical theories. The philosophical interpretation both upholds the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  7. Locality, localization, and the particle concept: Topics in the foundations of quantum field theory.Hans Halvorson - 2001 - Dissertation, University of Pittsburgh
    This dissertation reconsiders some traditional issues in the foundations of quantum mechanics in the context of relativistic quantum field theory (RQFT); and it considers some novel foundational issues that arise first in the context of RQFT. The first part of the dissertation considers quantum nonlocality in RQFT. Here I show that the generic state of RQFT displays Bell correlations relative to measurements performed in any pair of spacelike separated regions, no matter how distant. I also show (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Quantum Statistics, Quantum Field Theory, and the Interpretation Problem.Allen Ginsberg - 1983 - Dissertation, Rutgers the State University of New Jersey - New Brunswick
    Although philosophers have considered some of the implications of the nature of quantum statistics of many-particle systems for the interpretation problem, e.g., Reichenbach, they have not produced a complete analysis of the relationship between aspects of quantum statistics and complications and/or possible solutions of the interpretation problem. While the present work by no means provides a complete account, it does explore some heretofore uncharted regions. One of the latter is an analysis of a situation that I call 'The (...)
     
    Export citation  
     
    Bookmark   1 citation  
  9.  10
    Portrait of Gunnar Källén: A Physics Shooting Star and Poet of Early Quantum Field Theory.Cecilia Jarlskog (ed.) - 2014 - Cham: Imprint: Springer.
    Wolfgang Pauli referred to him as 'my discovery,' Robert Oppenheimer described him as 'one of the most gifted theorists' and Niels Bohr found him enormously stimulating. Who was the man in question, Gunnar Källén (1926-1968)? His appearance in the physics sky was like a shooting star. His contributions to the scientific debate caused excitement among young and old. Similar to his friend and mentor, Wolfgang Pauli, he demanded honesty and rigor in physics - a distinct dividing line between fact and (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  10.  34
    Elementary Particles: What are they? Substances, Elements and Primary Matter.D. -M. Cabaret, T. Grandou, G. -M. Grange & E. Perrier - 2023 - Foundations of Science 28 (2):727-753.
    The extremely successful _Standard Model of Particle Physics_ allows one to define the so-called _Elementary Particles_. From another point of view, how can we think of them? What kind of a status can be attributed to Elementary Particles and their associated quantised fields? Beyond the unprecedented efficiency and reach of quantum field theories, the current paper attempts at understanding the nature of what these theories describe, the enigmatic reality of the quantum world.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Are elementary particles individuals? A critical appreciation of Steven French and Décio Krause's identity in physics: A historical, philosophical, and formal analysis.Don Howard - unknown
    Steven French and Décio Krause have written what bids fair to be, for years to come, the definitive philosophical treatment of the problem of the individuality of elementary particles in quantum mechanics and quantum field theory. The book begins with a long and dense argument for the view that elementary particles are most helpfully regarded as non-individuals, and it concludes with an earnest attempt to develop a formal apparatus for describing such non-individual entities better suited (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  32
    Atomism Today. Classical and Quantum Concepts of Elementary Particles.Andrzej Łukasik - 2008 - Dialogue and Universalism 18 (11-12):31-38.
    Atomism is the programme explaining all changes in terms of invariant units. The development of physics during the 20th century may be treated as a spectacular triumph of atomism. However, paradoxically, changes and conceptual difficulties brought about by quantum mechanics lead to the conclusion that the ontological model provided by classical atomism has become inadequate. Atoms (and elementary particles) are not atomos—indivisible, perfectly solid, unchangeable, ungenerated and indestructible (eternal), and the void is not simply an empty space. According (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  13. Localizability and Elementary Particles.Gregg Jaeger - 2020 - Journal of Physics: Conference Series 1638:012010.
    The well-definedness of particles of any kind depends on the limits, approximations, or other conditions that may or may not be involved, for example, whether there are interactions and whether ostensibly related energy is localizable. In particular, their theoretical status differs between its non-relativistic and relativistic versions: One can properly define interacting elementary particles in single-system non-relativistic quantum mechanics, at least in the case of non-zero mass systems; by contrast, one is severely challenged to define even these properly (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  14. Quantum field theories in classical spacetimes and particles.Jonathan Bain - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):98-106.
    According to a Received View, relativistic quantum field theories (RQFTs) do not admit particle interpretations. This view requires that particles be localizable and countable, and that these characteristics be given mathematical expression in the forms of local and unique total number operators. Various results (the Reeh-Schlieder theorem, the Unruh Effect, Haag's theorem) then indicate that formulations of RQFTs do not support such operators. These results, however, do not hold for nonrelativistic QFTs. I argue that this is due to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  15.  37
    Elementary particle physics from general relativity.Mendel Sachs - 1981 - Foundations of Physics 11 (3-4):329-354.
    This paper presents a qualitative comparison of opposing views of elementary matter—the Copenhagen approach in quantum mechanics and the theory of general relativity. It discusses in detail some of their main conceptual differences, when each theory is fully exploited as a theory of matter, and it indicates why each of these theories, at its presently accepted state, is incomplete without the other. But it is then argued on logical grounds that they cannot be fused, thus indicating the need (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  36
    From Bohm’s Vision of Quantum Processes to Quantum Field Theory... to the Transactional Approach. Variations on the Theme. [REVIEW]Davide Fiscaletti - 2022 - Foundations of Physics 52 (3):1-25.
    The vision of quantum physics developed by David Bohm, and especially the idea of the implicit order, can be considered the true epistemological foundation of quantum field theory and the idea of a quantum vacuum that underlies the observable forms of matter, energy and space-time. Assuming the non-locality as the crucial visiting card of quantum processes, it is thus possible to arrive directly to the transactional interpretation and to the idea of a non-local quantum (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  46
    A Quantum Field Theory Description of Elementary Fermion “Epigenetics”.Claudio Verzegnassi - 2016 - World Futures 72 (3-4):187-190.
    I derive a number of impressive analogies between the modifications of the elementary components of Matter, generated by an external source of interaction, and the analogous modifications of the elementary components of an Organism. I will consider the interaction between the elementary components of matter and a weak classic magnetic field. This interaction will be treated in the theoretical quantum field theory formalism.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18. Emergence of particles from bosonic quantum field theory.David Wallace - manuscript
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  19.  80
    Particles in Quantum Field Theory.Doreen Fraser - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. 323-336.
    The consensus view among philosophers of physics is that relativistic quantum field theory does not describe particles. That is, according to QFT, particles are not fundamental entities. How is this negative conclusion compatible with the positive role that the particle notion plays in particle physics? The first part of this chapter lays out multiple lines of negative argument that all conclude that QFT cannot be given a particle interpretation. These arguments probe the properties of the `particles' in standard (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  23
    Quantum field theories in classical spacetimes and particles.Jonathan Bain - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):98-106.
  21.  39
    Particle Trajectories for Quantum Field Theory.Jeroen C. Vink - 2018 - Foundations of Physics 48 (2):209-236.
    The formulation of quantum mechanics developed by Bohm, which can generate well-defined trajectories for the underlying particles in the theory, can equally well be applied to relativistic quantum field theories to generate dynamics for the underlying fields. However, it does not produce trajectories for the particles associated with these fields. Bell has shown that an extension of Bohm’s approach can be used to provide dynamics for the fermionic occupation numbers in a relativistic quantum field theory. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  23.  47
    A Class of Elementary Particle Models Without Any Adjustable Real Parameters.Gerard ’T. Hooft - 2011 - Foundations of Physics 41 (12):1829-1856.
    Conventional particle theories such as the Standard Model have a number of freely adjustable coupling constants and mass parameters, depending on the symmetry algebra of the local gauge group and the representations chosen for the spinor and scalar fields. There seems to be no physical principle to determine these parameters as long as they stay within certain domains dictated by the renormalization group. Here however, reasons are given to demand that, when gravity is coupled to the system, local conformal invariance (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  47
    Reconciling axiomatic quantum field theory with cutoff-dependent particle physics.Adam Koberinski - manuscript
    The debate between Fraser and Wallace over the foundations of quantum field theory has spawned increased focus on both the axiomatic and conventional formalisms. The debate has set the tone for future foundational analysis, and has forced philosophers to “pick a side”. The two are seen as competing research programs, and the major divide between the two manifests in how each handles renormalization. In this paper I argue that the terms set by the Fraser-Wallace debate are misleading. AQFT (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Not Particles, Not Quite Fields: An Ontology for Quantum Field Theory.Tracy Lupher - 2018 - Humana Mente 4 (13):155-173.
    There are significant problems involved in determining the ontology of quantum field theory. An ontology involving particles seems to be ruled out due to the problem of defining localized position operators, issues involving interactions in QFT, and, perhaps, the appearance of unitarily inequivalent representations. While this might imply that fields are the most natural ontology for QFT, the wavefunctional interpretation of QFT has significant drawbacks. A modified field ontology is examined where determinables are assigned to open bounded (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  10
    General aspects of stochastic quantum field theory for extended particles.Eduard Prugovečki - 1981 - Foundations of Physics 11 (7-8):501-527.
    Theories of free fields describing spin zero and1/2 extended particles are derived within the stochastic quantum field theory (SQFT) framework. Covariant SQFT analogs of free Schwinger functions and Feynman propagators are obtained, and explicit expressions for charge and four-momentum operators are derived which exhibit a remarkable formal resemblance to their local counterparts. It is shown that the essential results of the LSZ formalism for interacting fields also have their counterpart in SQFT, and that the same holds true of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The Quantum Field Theory on Which the Everyday World Supervenes.Sean M. Carroll - 2022 - In Stavros Ioannidis, Gal Vishne, Meir Hemmo & Orly Shenker (eds.), Levels of Reality in Science and Philosophy. Copenhagen: Springer Cham. pp. 27-46.
    Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the "Core Theory" of the Standard Model of particle physics plus Einstein's general relativity. I will argue that EFT grants us a unique insight: each EFT model comes with a built-in specification of its domain of applicability. Hence, once a model is tested within some domain (of energies and interaction strengths), we can be confident that it will continue to be accurate within that domain. Currently, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  55
    Particles, Cutoffs and Inequivalent Representations: Fraser and Wallace on Quantum Field Theory.Matthias Egg, Vincent Lam & Andrea Oldofredi - 2017 - Foundations of Physics 47 (3):453-466.
    We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  29.  55
    Quantum field theories and aesthetic disparity.Gideon Engler - 2001 - International Studies in the Philosophy of Science 15 (1):51 – 63.
    The theoretical physicist Paul Dirac rejected, explicitly on aesthetic grounds, a successful theory known as quantum electrodynamics (QED), which is the prototype for the family of theories known as quantum field theories (QFTs). Remarkably, the theoretical physicist Steven Weinberg, also largely on aesthetic grounds, supports QED and other QFTs. In order to evaluate these opposing aesthetic views a short introduction to the physical properties of QFTs is presented together with a detailed analysis of the aesthetic claims of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  30. An Interpretive Introduction to Quantum Field Theory.Paul Teller - 1995 - Princeton University Press.
    Quantum mechanics is a subject that has captured the imagination of a surprisingly broad range of thinkers, including many philosophers of science. Quantum field theory, however, is a subject that has been discussed mostly by physicists. This is the first book to present quantum field theory in a manner that makes it accessible to philosophers. Because it presents a lucid view of the theory and debates that surround the theory, An Interpretive Introduction to Quantum (...)
    Direct download  
     
    Export citation  
     
    Bookmark   87 citations  
  31. Fields, Particles, and Curvature: Foundations and Philosophical Aspects of Quantum Field Theory in Curved Spacetime.Aristidis Arageorgis - 1995 - Dissertation, University of Pittsburgh
    The physical, mathematical, and philosophical foundations of the quantum theory of free Bose fields in fixed general relativistic spacetimes are examined. It is argued that the theory is logically and mathematically consistent whereas semiclassical prescriptions for incorporating the back-reaction of the quantum field on the geometry lead to inconsistencies. Still, the relations and heuristic value of the semiclassical approach to canonical and covariant schemes of quantum gravity-plus-matter are assessed. Both conventional and rigorous formulations of the theory (...)
     
    Export citation  
     
    Bookmark   17 citations  
  32. Taking particle physics seriously: A critique of the algebraic approach to quantum field theory.David Wallace - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):116-125.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  33. Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   72 citations  
  34.  68
    Quantum field theory, its concepts viewed from a semiotic perspective.Hans Günter Dosch, Volkhard F. Müller & Norman Sieroka - unknown
    Examining relativistic quantum field theory we claim that its description of subnuclear phenomena can be understood most adequately from a semiotic point of view. The paper starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theories. The particular methods, by which these different aspects have to be accessed, can be described as distinct facets of quantum field theory. They differ with respect to the relation between (...) fields and associated particles, and, as we shall argue, should be interpreted as complementary (semiotic) codes. Viewing physical theories as symbolic constructions already came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably, as we will point out, with the work of Helmholtz, Hertz, Poincaré, and later on Weyl. Since the epistemological questions posed there are heightened with regard to quantum field theory, we considerably widen their approach and relate it to recent discussions in the philosophy of science, like structural realism and quasi-autonomous domains. (shrink)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  13
    Isolated Objects and Their Evolution: A Derivation of the Propagator’s Path Integral for Spinless Elementary Particles.Domenico Napoletani & Daniele C. Struppa - 2022 - Foundations of Physics 52 (1):1-38.
    We formalize the notion of isolated objects, and we build a consistent theory to describe their evolution and interaction. We further introduce a notion of indistinguishability of distinct spacetime paths of a unit, for which the evolution of the state variables of the unit is the same, and a generalization of the equivalence principle based on indistinguishability. Under a time reversal condition on the whole set of indistinguishable paths of a unit, we show that the quantization of motion of spinless (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. The fate of 'particles' in quantum field theories with interactions.Doreen Fraser - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):841-859.
    Most philosophical discussion of the particle concept that is afforded by quantum field theory has focused on free systems. This paper is devoted to a systematic investigation of whether the particle concept for free systems can be extended to interacting systems. The possible methods of accomplishing this are considered and all are found unsatisfactory. Therefore, an interacting system cannot be interpreted in terms of particles. As a consequence, quantum field theory does not support the inclusion of (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   73 citations  
  37.  7
    Socio-Cultural Aspects of the Standard Model in Elementary Particles Physics and the History of Its Creation.Vladimir P. Vizgin - 2020 - Epistemology and Philosophy of Science 57 (3):160-175.
    The article соnsiders the socio-cultural aspects of the standard model (SM) in elementary particle physics and history of its creation. SM is a quantum field gauge theory of electromagnetic, weak and strong interactions, which is the basis of the modern theory of elementary particles. The process of its elaboration covers a twenty-year period: from 1954 (the concept of gauge fields by C. Yang and R. Mills) to the early 1970s., when the construction of renormalized quantum (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  45
    A Persistent Particle Ontology for Quantum Field Theory in Terms of the Dirac Sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - 2019 - British Journal for the Philosophy of Science 70 (3):747-770.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to quantum field theory. By means of the Dirac sea model—exemplified in the electron sector of the standard model neglecting radiation—we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  39. How to take particle physics seriously: A further defence of axiomatic quantum field theory.Doreen Fraser - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):126-135.
    Further arguments are offered in defence of the position that the variant of quantum field theory (QFT) that should be subject to interpretation and foundational analysis is axiomatic quantum field theory. I argue that the successful application of renormalization group (RG) methods within alternative formulations of QFT illuminates the empirical content of QFT, but not the theoretical content. RG methods corroborate the point of view that QFT is a case of the underdetermination of theory by empirical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  40. The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  41.  47
    Chaosmologies: Quantum Field Theory, Chaos and Thought in Deleuze and Guattari's What is Philosophy?Arkady Plotnitsky - 2006 - Paragraph 29 (2):40-56.
    This article explores the relationships between the philosophical foundations of quantum field theory, the currently dominant form of quantum physics, and Deleuze's concept of the virtual, most especially in relation to the idea of chaos found in Deleuze and Guattari's What is Philosophy?. Deleuze and Guattari appear to derive this idea partly from the philosophical conceptuality of quantum field theory, in particular the concept of virtual particle formation. The article then goes on to discuss, from (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  42.  22
    Quantum Field Theory of Black-Swan Events.H. Kleinert - 2014 - Foundations of Physics 44 (5):546-556.
    Free and weakly interacting particles are described by a second-quantized nonlinear Schrödinger equation, or relativistic versions of it. They describe Gaussian random walks with collisions. By contrast, the fields of strongly interacting particles are governed by effective actions, whose extremum yields fractional field equations. Their particle orbits perform universal Lévy walks with heavy tails, in which rare events are much more frequent than in Gaussian random walks. Such rare events are observed in exceptionally strong windgusts, monster or rogue waves, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  47
    Quantum Field Theory Formulated as a Markov Process Determined by Local Configuration.Jun Ni - 2021 - Foundations of Physics 51 (3):1-17.
    We propose the quantum field formalism as a new type of stochastic Markov process determined by local configuration. Our proposed Markov process is different with the classical one, in which the transition probability is determined by the state labels related to the character of state. In the new quantum Markov process, the transition probability is determined not only by the state character, but also by the occupation of the state. Due to the probability occupation of the state, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  90
    Bell-type quantum field theories.Sheldon Goldstein - manuscript
    In [3] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Ψ|2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   23 citations  
  45.  20
    Localizable Particles in the Classical Limit of Quantum Field Theory.Rory Soiffer, Jonah Librande & Benjamin H. Feintzeig - 2021 - Foundations of Physics 51 (2):1-31.
    A number of arguments purport to show that quantum field theory cannot be given an interpretation in terms of localizable particles. We show, in light of such arguments, that the classical ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document} limit can aid our understanding of the particle content of quantum field theories. In particular, we demonstrate that for the massive Klein–Gordon field, the classical limits of number operators can be understood to (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46. Primitive ontology and quantum field theory.Vincent Lam - 2015 - European Journal for Philosophy of Science 5 (3):387-397.
    Primitive ontology is a recently much discussed approach to the ontology of quantum theory according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. This paper critically discusses the primitive ontologies that have been suggested within the Bohmian approach to quantum field theory in the light of the existence of unitarily inequivalent representations. These primitive ontologies rely either on a Fock space representation or a wave functional representation, which are strictly speaking (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  47.  33
    Spin-Statistics Transmutation in Quantum Field Theory.P. A. Marchetti - 2010 - Foundations of Physics 40 (7):746-764.
    Spin-statistics transmutation is the phenomenon occurring when a “dressing” transformation introduced for physical reasons (e.g. gauge invariance) modifies the “bare” spin and statistics of particles or fields. Historically, it first appeared in Quantum Mechanics and in semiclassical approximation to Quantum Field Theory. After a brief historical introduction, we sketch how to describe such phenomenon in Quantum Field Theory beyond the semiclassical approximation, using a path-integral formulation of euclidean correlation functions, exemplifying with anyons, dyons and skyrmions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  24
    A self-consistent approach to quantum field theory for extended particles.Eduard Prugovečki - 1981 - Foundations of Physics 11 (5-6):355-382.
    A notion of quantum space-time is introduced, physically defined as the totality of all flows of quantum test particles in free fall. In quantum space-time the classical notion of deterministic inertial frames is replaced by that of stochastic frames marked by extended particles. The same particles are used both as markers of quantum space-time points as well as natural clocks, each species of quantum test particle thus providing a standard for space-time measurements. In the considered (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  49. The Vacuum in Relativistic Quantum Field Theory.Michael Redhead - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:77 - 87.
    The status of the vacuum in relativistic quantum field theory is examined. A sharp distinction arises between the global vacuum and the local vacuum. The concept of local number density is critically assessed. The global vacuum state implies fluctuations for all local observables. Correlations between such fluctuations in space-like separated regions of space-time are discussed and the existence of correlations which are maximal in a certain sense is remarked on, independently of how far apart those regions may be. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  50. Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   63 citations  
1 — 50 / 1000