About this topic
Summary All approaches to quantum theory need to make sense of the objective probabilities which apparently correspond to the square of the amplitudes of components of the quantum state.
Key works The Born rule connecting probabilities and squared-amplitudes was first formulated in Born 1926. The interpretation of probabilities varies widely across different approaches to quantum mechanics: as ever, Bell 2004 is indispensable in setting out the main options. Wallace 2012 provides an authoritative treatment of probability in Everettian QM.
Introductions Dickson 2011
Related categories

312 found
Order:
1 — 50 / 312
  1. Probabilities in deBroglie-Bohm Theory: Towards a Stochastic Alternative (Version 0.1 Beta).Patrick Dürr & Alexander Ehmann - manuscript
    We critically examine the role and status probabilities, as they enter via the Quantum Equilibrium Hypothesis, play in the standard, deterministic interpretation of deBroglie’s and Bohm’s Pilot Wave Theory (dBBT), by considering interpretations of probabilities in terms of ignorance, typicality and Humean Best Systems, respectively. We argue that there is an inherent conflict between dBBT and probabilities, thus construed. The conflict originates in dBBT’s deterministic nature, rooted in the Guidance Equation. Inquiring into the latter’s role within dBBT, we find it (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. On Classical Finite Probability Theory as a Quantum Probability Calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. QBism, the Perimeter of Quantum Bayesianism.Christopher A. Fuchs - manuscript
    This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   22 citations  
  4. Does Protective Measurement Tell Us Anything About Quantum Reality?Amit Hagar - manuscript
    An analysis of the two routes through which one may disentangle a quantum system from a measuring apparatus, hence protect the state vector of a single quantum system from being disturbed by the measurement, reveals several loopholes in the argument from protective measurement to the reality of the state vector of a single quantum system.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  5. Quantum Superpositions and the Measurement Problem.Andreas Henriksson - manuscript
    The measurement problem is addressed from the viewpoint that it is the distinguishability between the state preparation and its quantum ensemble, i.e. the set of states with which it has a non-zero overlap, that is at the heart of the difference between classical and quantum measurements. The measure for the degree of distinguishability between pairs of quantum states, i.e. the quantum fidelity, is for this purpose generalized, by the application of the superposition principle, to the setting where there exists an (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. Putting Probabilities First. How Hilbert Space Generates and Constrains Them.Michael Janas, Michael Cuffaro & Michel Janssen - manuscript
    We use Bub's (2016) correlation arrays and Pitowksy's (1989b) correlation polytopes to analyze an experimental setup due to Mermin (1981) for measurements on the singlet state of a pair of spin-12 particles. The class of correlations allowed by quantum mechanics in this setup is represented by an elliptope inscribed in a non-signaling cube. The class of correlations allowed by local hidden-variable theories is represented by a tetrahedron inscribed in this elliptope. We extend this analysis to pairs of particles of arbitrary (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  7. Matters of Time Directionality in Quantum Physics.Jean-Christophe Lindner - manuscript
    This is the second of two reports concerning the issue of time directionality in fundamental theoretical physics. Here a fresh perspective is offered on several aspects of the problem of the interpretation of quantum theory which centers around a reconsideration of the significance of the requirement of time reversal symmetry. Following a critical review of early time-symmetric formulations of quantum mechanics, it is argued that a more consistent approach must overcome the contradictions of the orthodox interpretation that follow from its (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  8. The Concept of Probability in Physics: An Analytic Version of von Mises’ Interpretation.Louis Vervoort - manuscript
    In the following we will investigate whether von Mises’ frequency interpretation of probability can be modified to make it philosophically acceptable. We will reject certain elements of von Mises’ theory, but retain others. In the interpretation we propose we do not use von Mises’ often criticized ‘infinite collectives’ but we retain two essential claims of his interpretation, stating that probability can only be defined for events that can be repeated in similar conditions, and that exhibit frequency stabilization. The central idea (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  9. Quantum Probability and Decision Theory, Revisited [2002 Online-Only Paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  10. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - forthcoming - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to the Philosophy of Physics. Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Quantum Mechanics Over Sets.David Ellerman - forthcoming - Synthese.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12. Is the Reality Criterion Analytic?David Glick & Florian J. Boge - forthcoming - Erkenntnis:1-7.
    Tim Maudlin has claimed that EPR’s Reality Criterion is analytically true. We argue that it is not. Moreover, one may be a subjectivist about quantum probabilities without giving up on objective physical reality. Thus, would-be detractors must reject QBism and other epistemic approaches to quantum theory on other grounds.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. EPR, Bell and Quantum Probability.S. Gudder - forthcoming - Foundations of Physics.
  14. Information Causality, the Tsirelson Bound, and the ‘Being-Thus’ of Things.Michael E. Cuffaro - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:266-277.
    The principle of 'information causality' can be used to derive an upper bound---known as the 'Tsirelson bound'---on the strength of quantum mechanical correlations, and has been conjectured to be a foundational principle of nature. In this paper, however, I argue that the principle has not to date been sufficiently motivated to play this role; the motivations that have so far been given are either unsatisfactorily vague or else amount to little more than an appeal to intuition. I then consider how (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Reformulating Bell's Theorem: The Search for a Truly Local Quantum Theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16. The Nature of Contingency: Quantum Physics as Modal Realism.Alastair Wilson - 2020 - Oxford, UK: Oxford University Press.
    This book defends a radical new theory of contingency as a physical phenomenon. Drawing on the many-worlds approach to quantum theory and cutting-edge metaphysics and philosophy of science, it argues that quantum theories are best understood as telling us about the space of genuine possibilities, rather than as telling us solely about actuality. When quantum physics is taken seriously in the way first proposed by Hugh Everett III, it provides the resources for a new systematic metaphysical framework encompassing possibility, necessity, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  17. Quantum Information Versus Epistemic Logic: An Analysis of the Frauchiger–Renner Theorem.Florian J. Boge - 2019 - Foundations of Physics 49 (10):1143-1165.
    A recent no-go theorem (Frauchiger and Renner in Nat Commun 9(1):3711, 2018) establishes a contradiction from a specific application of quantum theory to a multi- agent setting. The proof of this theorem relies heavily on notions such as ‘knows’ or ‘is certain that’. This has stimulated an analysis of the theorem by Nurgalieva and del Rio (in: Selinger P, Chiribella G (eds) Proceedings of the 15th international conference on quantum physics and logic (QPL 2018). EPTCS 287, Open Publishing Association, Waterloo, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18. The Best of Many Worlds, or, is Quantum Decoherence the Manifestation of a Disposition?Florian J. Boge - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:135-144.
    In this paper I investigate whether the phenomenon of quantum decoherence, the vanishing of interference and detectable entanglement on quantum systems in virtue of interactions with the environment, can be understood as the manifestation of a disposition. I will highlight the advantages of this approach as a realist interpretation of the quantum formalism, and demonstrate how such an approach can benefit from advances in the metaphysics of dispositions. I will also confront some commonalities with and differences to the many worlds (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  19. In Defence of the Self-Location Uncertainty Account of Probability in the Many-Worlds Interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment will (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  21. Reconsidering No-Go Theorems From a Practical Perspective.Michael E. Cuffaro - 2018 - British Journal for the Philosophy of Science 69 (3):633-655.
    I argue that our judgements regarding the locally causal models that are compatible with a given constraint implicitly depend, in part, on the context of inquiry. It follows from this that certain quantum no-go theorems, which are particularly striking in the traditional foundational context, have no force when the context switches to a discussion of the physical systems we are capable of building with the aim of classically reproducing quantum statistics. I close with a general discussion of the possible implications (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Simon Friederich: Interpreting Quantum Theory: A Therapeutic Approach: Palgrave Macmillan, New York, 2015, Xiii + 202 Pp. [REVIEW]Florian Boge - 2017 - Erkenntnis 82 (2):443-449.
    Simon Friederich’s Therapeutic Approach to quantum theory (QT) sheds new light on the status of the quantum state. In particular, Friederich presents revisionary ideas on how to exactly differentiate objective from subjective elements of the theory and thereby improves upon previous stabs at an epistemic interpretation of quantum states. The book not only provides interesting perspectives for the cognoscenti but is also written with sufficient care and free of unnecessary technicalities so as to be accessible and worth reading for the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Quantum Mechanics Over Sets: A Pedagogical Model with Non-Commutative Finite Probability Theory as its Quantum Probability Calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Reconditioning in Discrete Quantum Field Theory.Stan Gudder - 2017 - International Journal of Theoretical Physics, Springer-Verlag, USA, 122:1-14.
    AUTHOR: STAN GUDDER (John Evans Professor of Mathematical Physics, University of Denver, USA) -- -/- We consider a discrete scalar, quantum field theory based on a cubic 4-dimensional lattice. We mainly investigate a discrete scattering operator S(x0,r) where x0 and r are positive integers representing time and maximal total energy, respectively. The operator S(x0,r) is used to define transition amplitudes which are then employed to compute transition probabilities. These probabilities are conditioned on the time-energy (x0,r). In order to maintain total (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. On the Tension Between Ontology and Epistemology in Quantum Probabilities.Amit Hagar - 2017 - In Lombardi (ed.), What is Quantum Information. Cambridge: CUP. pp. 147-178.
    For many among the scientifically informed public, and even among physicists, Heisenberg's uncertainty principle epitomizes quantum mechanics. Nevertheless, more than 86 years after its inception, there is no consensus over the interpretation, scope, and validity of this principle. The aim of this chapter is to offer one such interpretation, the traces of which may be found already in Heisenberg's letters to Pauli from 1926, and in Dirac's anticipation of Heisenberg's uncertainty relations from 1927, that stems form the hypothesis of finite (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  26. Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2017 - In Shan Gao (ed.), Collapse of the Wave Function. Cambridge: Cambridge University Press. pp. 257-273.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27. Is QBism the Future of Quantum Physics? [REVIEW]Kelvin McQueen - 2017 - Quantum Times 2017.
    The purpose of this book is to explain Quantum Bayesianism (‘QBism’) to “people without easy access to mathematical formulas and equations” (4-5). Qbism is an interpretation of quantum mechanics that “doesn’t meddle with the technical aspects of the theory [but instead] reinterprets the fundamental terms of the theory and gives them new meaning” (3). The most important motivation for QBism, enthusiastically stated on the book’s cover, is that QBism provides “a way past quantum theory’s paradoxes and puzzles” such that much (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  28. Quantum Mechanics in a New Light.Ulrich Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29. The Quantum Doomsday Argument.Alastair Wilson - 2017 - British Journal for the Philosophy of Science 68 (2).
    If the most familiar overlapping interpretation of Everettian quantum mechanics is correct, then each of us is constantly splitting into multiple people. This consequence gives rise to the quantum doomsday argument, which threatens to draw crippling epistemic consequences from EQM. However, a diverging interpretation of EQM undermines the quantum doomsday argument completely. This appears to tell in favour of the diverging interpretation. But it is surprising that a metaphysical question that is apparently underdetermined by the physics should be settled by (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Quantum Cognition and Bounded Rationality.Reinhard Blutner & Peter Beim Graben - 2016 - Synthese 193 (10).
    We consider several puzzles of bounded rationality. These include the Allais- and Ellsberg paradox, the disjunction effect, and related puzzles. We argue that the present account of quantum cognition—taking quantum probabilities rather than classical probabilities—can give a more systematic description of these puzzles than the alternate treatments in the traditional frameworks of bounded rationality. Unfortunately, the quantum probabilistic treatment does not always provide a deeper understanding and a true explanation of these puzzles. One reason is that quantum approaches introduce additional (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31. The Quantum Mechanics of Being and Its Manifestation.Ulrich Mohrhoff - 2016 - Cosmology 24.
    How can quantum mechanics be (i) the fundamental theoretical framework of contemporary physics and (ii) a probability calculus that presupposes the events to which, and on the basis of which, it assigns probabilities? The question is answered without invoking knowledge or observers, by interpreting the necessary distinction between two kinds of physical quantities - unconditionally definite quantities and quantities that have values only if they are measured - as a distinction between the manifested world and its manifestation.(The arXived version contains (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32. Quantum Mechanics as a Deterministic Theory of a Continuum of Worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett’s (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Counting Steps: A Finitist Interpretation of Objective Probability in Physics.Amit Hagar & Giuseppe Sergioli - 2015 - Epistemologia 37 (2):262-275.
    We propose a new interpretation of objective deterministic chances in statistical physics based on physical computational complexity. This notion applies to a single physical system (be it an experimental set--up in the lab, or a subsystem of the universe), and quantifies (1) the difficulty to realize a physical state given another, (2) the 'distance' (in terms of physical resources) from a physical state to another, and (3) the size of the set of time--complexity functions that are compatible with the physical (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods from Mathematics to Neuroscience. Stanford: CSLI Publications. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, the paper collected (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. Relating Bell’s Local Causality to the Causal Markov Condition.Gábor Hofer-Szabó - 2015 - Foundations of Physics 45 (9):1110-1136.
    The aim of the paper is to relate Bell’s notion of local causality to the Causal Markov Condition. To this end, first a framework, called local physical theory, will be introduced integrating spatiotemporal and probabilistic entities and the notions of local causality and Markovity will be defined. Then, illustrated in a simple stochastic model, it will be shown how a discrete local physical theory transforms into a Bayesian network and how the Causal Markov Condition arises as a special case of (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  36. CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities.Andrei Khrennikov - 2015 - Foundations of Physics 45 (7):711-725.
    In this note we demonstrate that the results of observations in the EPR–Bohm–Bell experiment can be described within the classical probabilistic framework. However, the “quantum probabilities” have to be interpreted as conditional probabilities, where conditioning is with respect to fixed experimental settings. Our approach is based on the complete account of randomness involved in the experiment. The crucial point is that randomness of selections of experimental settings has to be taken into account within one consistent framework covering all events related (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  37. Review Of: Christopher G. Timpson, Quantum Information Theory and the Foundations of Quantum Mechanics. [REVIEW]Michael E. Cuffaro - 2014 - Philosophy of Science 81 (4):681-684,.
  38. Preface Special Issue Foundations of Physics.Dennis Dieks, Décio Krause & Christian de Ronde - 2014 - Foundations of Physics 44 (12):1245-1245.
    The foundations of quantum mechanics are attracting new and significant interest in the scientific community due to the recent striking experimental and technical progress in the fields of quantum computation, quantum teleportation and quantum information processing. However, at a more fundamental level the understanding and manipulation of these novel phenomena require not only new laboratory techniques but also new understanding, development and interpretation of the formalism of quantum mechanics itself, a mathematical structure whose connection to what happens in physical reality (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. No-Forcing and No-Matching Theorems for Classical Probability Applied to Quantum Mechanics.Ehtibar N. Dzhafarov & Janne V. Kujala - 2014 - Foundations of Physics 44 (3):248-265.
    Correlations of spins in a system of entangled particles are inconsistent with Kolmogorov’s probability theory (KPT), provided the system is assumed to be non-contextual. In the Alice–Bob EPR paradigm, non-contextuality means that the identity of Alice’s spin (i.e., the probability space on which it is defined as a random variable) is determined only by the axis $\alpha _{i}$ chosen by Alice, irrespective of Bob’s axis $\beta _{j}$ (and vice versa). Here, we study contextual KPT models, with two properties: (1) Alice’s (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Insolubility Theorems and EPR Argument.Guido Bacciagaluppi - 2013 - European Journal for Philosophy of Science 3 (1):87-100.
    I present a very general and simple argument—based on the no-signalling theorem—showing that within the framework of the unitary Schrödinger equation it is impossible to reproduce the phenomenological description of quantum mechanical measurements (in particular the collapse of the state of the measured system) by assuming a suitable mixed initial state of the apparatus. The thrust of the argument is thus similar to that of the ‘insolubility theorems’ for the measurement problem of quantum mechanics (which, however, focus on the impossibility (...)
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Superposition of Episodic Memories: Overdistribution and Quantum Models.Charles J. Brainerd, Zheng Wang & Valerie F. Reyna - 2013 - Topics in Cognitive Science 5 (4):773-799.
    Memory exhibits episodic superposition, an analog of the quantum superposition of physical states: Before a cue for a presented or unpresented item is administered on a memory test, the item has the simultaneous potential to occupy all members of a mutually exclusive set of episodic states, though it occupies only one of those states after the cue is administered. This phenomenon can be modeled with a nonadditive probability model called overdistribution (OD), which implements fuzzy-trace theory's distinction between verbatim and gist (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  42. Locality and Mentality in Everett Interpretations: Albert and Loewer’s Many Minds.Laura Felline & Guido Bacciagaluppi - 2013 - Mind and Matter 11 (2).
    This is the first of two papers reviewing and analysing the approach to locality and to mind-body dualism proposed in Everett interpreta- tions of quantum mechanics. The planned companion paper will focus on the contemporary decoherence-based approaches to Everett. This paper instead treats the explicitly mentalistic Many Minds Interpreta- tion proposed by David Albert and Barry Loewer (Albert and Loewer 1988). In particular, we investigate what kind of supervenience of the mind on the body is implied by Albert and Loewer’s (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43. A Positive Formalism for Quantum Theory in the General Boundary Formulation.Robert Oeckl - 2013 - Foundations of Physics 43 (10):1206-1232.
    We introduce a new “positive formalism” for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  44. The Quantum Harmonic Oscillator in the ESR Model.Sandro Sozzo - 2013 - Foundations of Physics 43 (6):792-804.
    The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced by measurements. We study (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  45. Does Chance Hide Necessity ? A Reevaluation of the Debate ‘Determinism - Indeterminism’ in the Light of Quantum Mechanics and Probability Theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that indeterminism (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  46. The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  47. Should We Fear Quantum Torment?István Aranyosi - 2012 - Ratio 25 (3):249-259.
    The prospect, in terms of subjective expectations, of immortality under the no-collapse interpretation of quantum mechanics is certain, as pointed out by several authors, both physicists and, more recently, philosophers. The argument, known as quantum suicide, or quantum immortality, has received some critical discussion, but there hasn't been any questioning of David Lewis's point that there is a terrifying corollary to the argument, namely, that we should expect to live forever in a crippled, more and more damaged state, that barely (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Bell Nonlocality, Signal Locality and Unpredictability (or What Bohr Could Have Told Einstein at Solvay Had He Known About Bell Experiments).Eric G. Cavalcanti & Howard M. Wiseman - 2012 - Foundations of Physics 42 (10):1329-1338.
    The 1964 theorem of John Bell shows that no model that reproduces the predictions of quantum mechanics can simultaneously satisfy the assumptions of locality and determinism. On the other hand, the assumptions of signal locality plus predictability are also sufficient to derive Bell inequalities. This simple theorem, previously noted but published only relatively recently by Masanes, Acin and Gisin, has fundamental implications not entirely appreciated. Firstly, nothing can be concluded about the ontological assumptions of locality or determinism independently of each (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Quantum Probabilities and the Conjunction Principle.Igor Douven & Jos Uffink - 2012 - Synthese 184 (1):109-114.
    A recent argument by Hawthorne and Lasonen-Aarnio purports to show that we can uphold the principle that competently forming conjunctions is a knowledge-preserving operation only at the cost of a rampant skepticism about the future. A key premise of their argument is that, in light of quantum-mechanical considerations, future contingents never quite have chance 1 of being true. We argue, by drawing attention to the order of magnitude of the relevant quantum probabilities, that the skeptical threat of Hawthorne and Lasonen-Aarnio’s (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  50. Decoherence: The View From the History and the Philosophy of Science.Amit Hagar - 2012 - Phil. Trans. Royal Soc. London A 375 (1975).
    We present a brief history of decoherence, from its roots in the foundations of classical statistical mechanics, to the current spin bath models in condensed matter physics. We analyze the philosophical import of the subject matter in three different foundational problems, and find that, contrary to the received view, decoherence is less instrumental to their solutions than it is commonly believed. What makes decoherence more philosophically interesting, we argue, are the methodological issues it draws attention to, and the question of (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
1 — 50 / 312