Results for 'chromatin organization'

1000+ found
Order:
  1.  24
    Chromatin organization at meiosis.Peter B. Møens & Ronald E. Pearlman - 1988 - Bioessays 9 (5):151-153.
    From 1956, when the complex ultrastructure of meiotic chromosomes was discovered, 1 until 1985, when the isolation of meiotic chromosome cores was reported, knowledge of the molecular structure of the meiotic chromosome was at best a dream. The dissection of meiotic chromosome structures has become a realistic challenge through the arrival of isolated symptonemal complexes (SCs), monoclonal and polyclonal antibodies against SCs, the possibility for screening expression libraries for genes that encode SC proteins, the isolation of SC‐associated DNA, and the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  42
    Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.Sergey V. Ulianov, Kikue Tachibana-Konwalski & Sergey V. Razin - 2017 - Bioessays 39 (10):1700104.
    Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture -based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  40
    Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.Sergey V. Ulianov, Kikue Tachibana-Konwalski & Sergey V. Razin - 2017 - Bioessays 39 (10):1700104.
    Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture -based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  8
    Nuclear organization: Uniting replication foci, chromatin domains and chromosome structure.Dean A. Jackson - 1995 - Bioessays 17 (7):587-591.
    In higher eukaryotes, ‘replication factories’ coordinate DNA synthesis within local clusters of chromatin domains. Recent experiments(1,2) have confirmed the complexity of these clusters and established that the organization of sites labelled during S phase persists throughout the cell cycle. This implies that domain clusters are critical elements of an hierarchy that is fundamental to both nuclear and chromosome structure.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  10
    Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking.Satoru Ide, Sachiko Tamura & Kazuhiro Maeshima - 2022 - Bioessays 44 (7):2200043.
    Eukaryotic genome DNA is wrapped around core histones and forms a nucleosome structure. Together with associated proteins and RNAs, these nucleosomes are organized three‐dimensionally in the cell as chromatin. Emerging evidence demonstrates that chromatin consists of rather irregular and variable nucleosome arrangements without the regular fiber structure and that its dynamic behavior plays a critical role in regulating various genome functions. Single‐nucleosome imaging is a promising method to investigate chromatin behavior in living cells. It reveals local (...) motion, which reflects chromatin organization not observed in chemically fixed cells. The motion data is like a gold mine. Data analyses from many aspects bring us more and more information that contributes to better understanding of genome functions. In this review article, we describe imaging of single‐nucleosomes and their tracked behavior through oblique illumination microscopy. We also discuss applications of this technique, especially in elucidating nucleolar organization in living cells. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  14
    Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?Nicholas E. Matthews & Rob White - 2019 - Bioessays 41 (9):1900048.
    The organization of the genome into topologically associated domains (TADs) appears to be a fundamental process occurring across a wide range of eukaryote organisms, and it likely plays an important role in providing an architectural foundation for gene regulation. Initial studies emphasized the remarkable parallels between TAD organization in organisms as diverse as Drosophila and mammals. However, whereas CCCTC‐binding factor (CTCF)/cohesin loop extrusion is emerging as a key mechanism for the formation of mammalian topological domains, the genome (...) in Drosophila appears to depend primarily on the partitioning of chromatin state domains. Recent work suggesting a fundamental conserved role of chromatin state in building domain architecture is discussed and insights into genome organization from recent studies in Drosophila are considered. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  32
    Broad Chromatin Domains: An Important Facet of Genome Regulation.Francesco N. Carelli, Garima Sharma & Julie Ahringer - 2017 - Bioessays 39 (12):1700124.
    Chromatin composition differs across the genome, with distinct compositions characterizing regions associated with different properties and functions. Whereas many histone modifications show local enrichment over genes or regulatory elements, marking can also span large genomic intervals defining broad chromatin domains. Here we highlight structural and functional features of chromatin domains marked by histone modifications, with a particular emphasis on the potential roles of H3K27 methylation domains in the organization and regulation of genome activity in metazoans. (...) domains are extended genomic regions defined by the continuous enrichment of a given histone modification. Here, we review recent work highlighting the presence of chromatin domains in multiple species, their structural aspects in the context of chromatin architecture, and their potential role on the regulation of genome activity. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  4
    Mammalian chromodomain proteins: their role in genome organisation and expression.A. D. Morrison - 2000 - Bioessays 22 (2):124-137.
    The chromodomain is a highly conserved sequence motif that has been identified in a variety of animal and plant species. In mammals, chromodomain proteins appear to be either structural components of large macromolecular chromatin complexes or proteins involved in remodelling chromatin structure. Recent work has suggested that apart from a role in regulating gene activity, chromodomain proteins may also play roles in genome organisation. This article reviews progress made in characterising mammalian chromodomain proteins and emphasises their emerging role (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Mammalian chromodomain proteins: their role in genome organisation and expression.David O. Jones, Ian G. Cowell & Prim B. Singh - 2000 - Bioessays 22 (2):124-137.
    The chromodomain is a highly conserved sequence motif that has been identified in a variety of animal and plant species. In mammals, chromodomain proteins appear to be either structural components of large macromolecular chromatin complexes or proteins involved in remodelling chromatin structure. Recent work has suggested that apart from a role in regulating gene activity, chromodomain proteins may also play roles in genome organisation. This article reviews progress made in characterising mammalian chromodomain proteins and emphasises their emerging role (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  10.  14
    Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors.Lucia Falbo & Vincenzo Costanzo - 2021 - Bioessays 43 (1):2000181.
    During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid‐blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  19
    How chromatin prevents genomic rearrangements: Locus colocalization induced by transcription factor binding.Jérôme Déjardin - 2012 - Bioessays 34 (2):90-93.
    Graphical AbstractThe loosening of chromatin structures gives rise to unrestricted access to DNA and thus transcription factors (TFs) can bind to their otherwise masked target sequences. Regions bound by the same set of TFs tend to be located in close proximity and this might increase the probability of activating illegitimate genomic rearrangements.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  17
    Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler.Sarah J. Hainer & Craig D. Kaplan - 2020 - Bioessays 42 (7):2000002.
    The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  17
    What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation.Michelle Percharde, Tania Sultana & Miguel Ramalho-Santos - 2020 - Bioessays 42 (4):1900232.
    Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis‐elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  18
    Many paths lead chromatin to the nuclear periphery.Molly R. Gordon, Benjamin D. Pope, Jiao Sima & David M. Gilbert - 2015 - Bioessays 37 (8):862-866.
    t is now well accepted that defined architectural compartments within the cell nucleus can regulate the transcriptional activity of chromosomal domains within their vicinity. However, it is generally unclear how these compartments are formed. The nuclear periphery has received a great deal of attention as a repressive compartment that is implicated in many cellular functions during development and disease. The inner nuclear membrane, the nuclear lamina, and associated proteins compose the nuclear periphery and together they interact with proximal chromatin (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  6
    On transition metal ions and protein interactions in chromatin.Raul A. Saavedra - 1988 - Bioessays 8 (1):32-34.
    Metal ions may play an essential role in chromatin organization and, thus, be main actors in the gene expression drama. A model is proposed here for the interaction of DNA‐binding transcriptional regulatory proteins with histone H3 via coordinated metal ions and discussed in relation to the conversion of nucleosomal ‘closed’ to ‘open’ states.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  20
    The many colours of chromodomains.Alexander Brehm, Katharina R. Tufteland, Rein Aasland & Peter B. Becker - 2004 - Bioessays 26 (2):133-140.
    Local differences in chromatin organisation may profoundly affect the activity of eukaryotic genomes. Regulation at the level of DNA packaging requires the targeting of structural proteins and histone‐modifying enzymes to specific sites and their stable or dynamic interaction with the nucleosomal fiber. The “chromodomain”, a domain shared by many regulators of chromatin structure, has long been suspected to serve as a module mediating chromatin interactions in a variety of different protein contexts. However, recent functional analyses of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  38
    Chromatin loops, illegitimate recombination, and genome evolution.Omar L. Kantidze & Sergey V. Razin - 2009 - Bioessays 31 (3):278-286.
    Chromosomal rearrangements frequently occur at specific places (“hot spots”) in the genome. These recombination hot spots are usually separated by 50–100 kb regions of DNA that are rarely involved in rearrangements. It is quite likely that there is a correlation between the above‐mentioned distances and the average size of DNA loops fixed at the nuclear matrix. Recent studies have demonstrated that DNA loop anchorage regions can be fairly long and can harbor DNA recombination hot spots. We previously proposed that chromosomal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  69
    Back to Chromatin: ENCODE and the Dynamic Epigenome.Ehud Lamm & Sophie Juliane Veigl - 2022 - Biological Theory 17 (4):235-242.
    The “Encyclopedia of DNA Elements” (ENCODE) project was launched by the US National Human Genome Research Institute in the aftermath of the Human Genome Project (HGP). It aimed to systematically map the human transcriptome, and held the promise that identifying potential regulatory regions and transcription factor binding sites would help address some of the perplexing results of the HGP. Its initial results published in 2012 produced a flurry of high-impact publications as well as criticisms. Here we put the results of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  5
    Modulation of H3.3 chromatin assembly by PML: A way to regulate epigenetic inheritance.Erwan Delbarre & Susan M. Janicki - 2021 - Bioessays 43 (10):2100038.
    Although the promyelocytic leukemia (PML) protein is renowned for regulating a wide range of cellular processes and as an essential component of PML nuclear bodies (PML‐NBs), the mechanisms through which it exerts its broad physiological impact are far from fully elucidated. Here, we review recent studies supporting an emerging view that PML's pleiotropic effects derive, at least partially, from its role in regulating histone H3.3 chromatin assembly, a critical epigenetic mechanism. These studies suggest that PML maintains heterochromatin organization (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  15
    The establishment of active promoters in chromatin.Peter B. Becker - 1994 - Bioessays 16 (8):541-547.
    The organization of eukaryotic genomes as chromatin provides the framework within which regulated transcription occurs in the nucleus. The association of DNA with chromatin proteins required to package the genome into the nucleus is, in general, inhibitory to transcription, and therefore provides opportunities for regulated transcriptional activation. Granting access to the cis‐acting elements in DNA, a prerequisite for any further action of the trans‐acting factors involved, requires the establishment of local heterogeneity of chromatin and, in some (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  18
    Cajal body function in genome organization and transcriptome diversity.Iain A. Sawyer, David Sturgill, Myong-Hee Sung, Gordon L. Hager & Miroslav Dundr - 2016 - Bioessays 38 (12):1197-1208.
    Nuclear bodies contribute to non‐random organization of the human genome and nuclear function. Using a major prototypical nuclear body, the Cajal body, as an example, we suggest that these structures assemble at specific gene loci located across the genome as a result of high transcriptional activity. Subsequently, target genes are physically clustered in close proximity in Cajal body‐containing cells. However, Cajal bodies are observed in only a limited number of human cell types, including neuronal and cancer cells. Ultimately, Cajal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  24
    Topological domains in mammalian genomes identified by analysis of chromatin interactions.Yin Shen, Dixon Jr, S. Selvaraj, F. Yue, A. Kim, Y. Li, M. Hu, J. S. Liu & B. Ren - unknown
    The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  23.  24
    Asymmetric nuclear reprogramming in somatic cell nuclear transfer?Pasqualino Loi, Nathalie Beaujean, Saadi Khochbin, Josef Fulka & Grazyna Ptak - 2008 - Bioessays 30 (1):66-74.
    Despite the progress achieved over the last decade after the birth of the first cloned mammal, the efficiency of reproductive cloning remains invariably low. However, research aiming at the use of nuclear transfer for the production of patient‐tailored stem cells for cell/tissue therapy is progressing rapidly. Yet, reproductive cloning has many potential implications for animal breeding, transgenic research and the conservation of endangered species. In this article we suggest that the changes in the epi‐/genotype observed in cloned embryos arise from (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Does CTCF mediate between nuclear organization and gene expression?Rolf Ohlsson, Victor Lobanenkov & Elena Klenova - 2010 - Bioessays 32 (1):37-50.
    The multifunctional zinc‐finger protein CCCTC‐binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three‐dimensional position in the nucleus, apparently responding to a “code” in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  10
    The dynamic role of cohesin in maintaining human genome architecture.Abhishek Agarwal, Sevastianos Korsak, Ashutosh Choudhury & Dariusz Plewczynski - 2023 - Bioessays 45 (10):2200240.
    Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher‐order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC‐binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  3
    Spatial genome organization, TGFβ, and biomolecular condensates: Do they talk during development?Marta Vicioso-Mantis & Marian A. Martínez-Balbás - 2022 - Bioessays 44 (12):2200145.
    Cis‐regulatory elements govern gene expression programs to determine cell identity during development. Recently, the possibility that multiple enhancers are orchestrated in clusters of enhancers has been suggested. How these elements are arranged in the 3D space to control the activation of a specific promoter remains unclear. Our recent work revealed that the TGFβ pathway drives the assembly of enhancer clusters and precise gene activation during neurogenesis. We discovered that the TGFβ pathway coactivator JMJD3 was essential in maintaining these structures in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  8
    The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus.Thomas Cremer, Marion Cremer, Barbara Hübner, Asli Silahtaroglu, Michael Hendzel, Christian Lanctôt, Hilmar Strickfaden & Christoph Cremer - 2020 - Bioessays 42 (2):1900132.
    This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less‐compacted (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  24
    Replication stress, a source of epigenetic aberrations in cancer?Zuzana Jasencakova & Anja Groth - 2010 - Bioessays 32 (10):847-855.
    Cancer cells accumulate widespread local and global chromatin changes and the source of this instability remains a key question. Here we hypothesize that chromatin alterations including unscheduled silencing can arise as a consequence of perturbed histone dynamics in response to replication stress. Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  6
    Genome architecture and totipotency: An intertwined relation during early embryonic development.Teresa Olbrich & Sergio Ruiz - 2022 - Bioessays 44 (7):2200029.
    Chromosomes are not randomly packed and positioned into the nucleus but folded in higher‐order chromatin structures with defined functions. However, the genome of a fertilized embryo undergoes a dramatic epigenetic reprogramming characterized by extensive chromatin relaxation and the lack of a defined three‐dimensional structure. This reprogramming is followed by a slow genome refolding that gradually strengthens the chromatin architecture during preimplantation development. Interestingly, genome refolding during early development coincides with a progressive loss of developmental potential suggesting a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  9
    ORChestra coordinates the replication and repair music.Dazhen Liu, Jay Sonalkar & Supriya G. Prasanth - 2023 - Bioessays 45 (4):2200229.
    Error‐free genome duplication and accurate cell division are critical for cell survival. In all three domains of life, bacteria, archaea, and eukaryotes, initiator proteins bind replication origins in an ATP‐dependent manner, play critical roles in replisome assembly, and coordinate cell‐cycle regulation. We discuss how the eukaryotic initiator, Origin recognition complex (ORC), coordinates different events during the cell cycle. We propose that ORC is the maestro driving the orchestra to coordinately perform the musical pieces of replication, chromatin organization, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  15
    Do age‐associated DNA methylation changes increase the risk of malignant transformation?Wolfgang Wagner, Carola I. Weidner & Qiong Lin - 2015 - Bioessays 37 (1):20-24.
    Aging of the organism is associated with highly reproducible DNA methylation (DNAm) changes, which facilitate estimation of donor age. Cancer is also associated with DNAm changes, which may contribute to disease development. Here, we speculate that age‐associated DNAm changes may increase the risk of tumor initiation. Notably, when using epigenetic signatures for age‐estimations tumor cells are often predicted to be much older than the chronological age of the patient. We demonstrate that aberrant hypermethylation within the gene DNA methyltransferase 3A (DNMT3A) (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  16
    Epigenetics across the evolutionary tree: New paradigms from non‐model animals.Kirsten C. Sadler - 2023 - Bioessays 45 (1):2200036.
    All animals have evolved solutions to manage their genomes, enabling the efficient organization of meters of DNA strands in the nucleus and allowing for nuanced regulation of gene expression while keeping transposable elements suppressed. Epigenetic modifications are central to accomplishing all these. Recent advances in sequencing technologies and the development of techniques that profile epigenetic marks and chromatin accessibility using reagents that can be used in any species has catapulted epigenomic studies in diverse animal species, shedding light on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  34
    Dynamic functional and structural analysis of living cells: New tools for vital staining of nuclear DNA and for characterisation of cell motion.François Leitner, Sylvain Paillasson, Xavier Ronot & Jacques Demongeot - 1995 - Acta Biotheoretica 43 (4):299-317.
    Increasing interest has been paid to applications of fluorescence measurements to analyze physiological mechanisms in living cells. However, few studies have taken advantage of DNA quantification by fluorometry for dynamic assessment of chromatin organization as well as cell motion during the cell cycle. This approach involves both optimal conditions for DNA staining and cell tracking methods. In this context, this report describes a stoichiometric method for nuclear DNA specific staining, using the bisbenzimidazole dye Hoechst 33342 associated with verapamil, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  1
    HNRNPU's multi‐tasking is essential for proper cortical development.Tamar Sapir & Orly Reiner - 2023 - Bioessays 45 (9):2300039.
    Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a nuclear protein that plays a crucial role in various biological functions, such as RNA splicing and chromatin organization. HNRNPU/scaffold attachment factor A (SAF‐A) activities are essential for regulating gene expression, DNA replication, genome integrity, and mitotic fidelity. These functions are critical to ensure the robustness of developmental processes, particularly those involved in shaping the human brain. As a result, HNRNPU is associated with various neurodevelopmental disorders (HNRNPU‐related neurodevelopmental disorder, HNRNPU‐NDD) characterized by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  31
    Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver?Steven A. Roberts, Alexander J. Brown & John J. Wyrick - 2019 - Bioessays 41 (3):1800152.
    Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  8
    Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives.Maud Dieuleveult & Benoit Miotto - 2020 - Bioessays 42 (3):1900129.
    Ubiquitination plays a central role in the regulation of stem cell self‐renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra‐cellular trafficking; and how it affects cell metabolism, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  14
    Structure–function relationships in eukaryotic nuclei.Dean A. Jackson - 1991 - Bioessays 13 (1):1-10.
    It may be that eukaryotic nuclei contain a collection of operationally independent units (genes), each controlled through its interactions with soluble protein factors which diffuse at random throughout the nucleoplasmic space. Alternatively, nuclei might be organized in such a sophisticated fashion that specific genes, occupy distinct sites and that spatially ordered RNA synthesis, processing and transport delivers mature RNAs to predestined sites in the cytoplasm.Different fields of research support each of these extreme views. Molecular biologists inspecting the precise details of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  11
    Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond.Claudia Gentile & Marie Kmita - 2020 - Bioessays 42 (10):1900249.
    The coordinated expression of the Hox gene family encoding transcription factors is critical for proper embryonic development and patterning. Major efforts have thus been dedicated to understanding mechanisms controlling Hox expression. In addition to the temporal and spatial sequential activation of Hox genes, proper embryonic development requires that Hox genes get differentially silenced in a cell‐type specific manner as development proceeds. Factors contributing to Hox silencing include the polycomb repressive complexes (PRCs), which control gene expression through epigenetic modifications. This review (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  33
    Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome. [REVIEW]Sharmila Bapat & Sanjeev Galande - 2005 - Bioessays 27 (7):676-680.
    Rett syndrome (RTT) is an X‐linked dominant neurodevelopmental disorder affecting almost exclusively girls. Although mutations in methyl‐CpG‐binding protein (MeCP2) are known to be associated with RTT, gene expression patterns are not significantly altered in MeCP2‐deficient cells. A recent study1 identified MeCP2‐mediated histone modification and formation of a higher‐order chromatin loop structure specifically associated with silent chromatin at the Dlx5–Dlx6 locus in normal cells, and its absence thereof in RTT patients. This altered expression of Dlx5 through loss of silent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  46
    The potential of 3D‐FISH and super‐resolution structured illumination microscopy for studies of 3D nuclear architecture.Yolanda Markaki, Daniel Smeets, Susanne Fiedler, Volker J. Schmid, Lothar Schermelleh, Thomas Cremer & Marion Cremer - 2012 - Bioessays 34 (5):412-426.
    Three‐dimensional structured illumination microscopy (3D‐SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ∼100 nm range. We present first results and assess the potential using 3D‐SIM in combination with 3D fluorescence in situ hybridization (3D‐FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI‐stained DNA in nuclei before and after (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  10
    “Direct” and “Indirect” Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality.Wladyslaw A. Krajewski - 2020 - Bioessays 42 (1):1900136.
    The chromatin‐regulatory principles of histone post‐translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone “readers,” and as determinants of chromatin array compaction. Alterations of histone charges by “small” chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  11
    Promoters are key organizers of the duplication of vertebrate genomes.Caroline Brossas, Bénédicte Duriez, Anne-Laure Valton & Marie-Noëlle Prioleau - 2021 - Bioessays 43 (10):2100141.
    In vertebrates, single cell analyses of replication timing patterns brought to light a very well controlled program suggesting a tight regulation on initiation sites. Mapping of replication origins with different methods has revealed discrete preferential sites, enriched in promoters and potential G‐quadruplex motifs, which can aggregate into initiation zones spanning several tens of kilobases (kb). Another characteristic of replication origins is a nucleosome‐free region (NFR). A modified yeast strain containing a humanized origin recognition complex (ORC) fires new origins at NFRs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  67
    The genome in space and time: Does form always follow function?Zhijun Duan & Carl Anthony Blau - 2012 - Bioessays 34 (9):800-810.
    Recent systematic studies using newly developed genomic approaches have revealed common mechanisms and principles that underpin the spatial organization of eukaryotic genomes and allow them to respond and adapt to diverse functional demands. Genomes harbor, interpret, and propagate genetic and epigenetic information, and the three‐dimensional (3D) organization of genomes in the nucleus should be intrinsically linked to their biological functions. However, our understanding of the mechanisms underlying both the topological organization of genomes and the various nuclear processes (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  44.  8
    May the force be with you: Nuclear condensates function beyond transcription control.Maria Luce Negri, Sarah D'Annunzio, Giulia Vitali & Alessio Zippo - 2023 - Bioessays 45 (10):2300075.
    Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  31
    Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and modulate gene expression.Philippe Collas, Eivind G. Lund & Anja R. Oldenburg - 2014 - Bioessays 36 (1):75-83.
    The nuclear envelope shapes the functional organization of the nucleus. Increasing evidence indicates that one of its main components, the nuclear lamina, dynamically interacts with the genome, including the promoter region of specific genes. This seems to occur in a manner that accords developmental significance to these interactions. This essay addresses key issues raised by recent data on the association of nuclear lamins with the genome. We discuss how lamins interact with large chromatin domains and with spatially restricted (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  12
    Keeping intracellular DNA untangled: A new role for condensin?Joaquim Roca, Silvia Dyson, Joana Segura, Antonio Valdés & Belén Martínez-García - 2022 - Bioessays 44 (1):2100187.
    The DNA‐passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed. First, although topoisomerase II is able to minimize DNA entanglements in vitro to below equilibrium values, it is unclear whether such capacity performs equally in vivo in chromatinized DNA. Second, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  7
    Causality in transcription and genome folding: Insights from X inactivation.Moritz Bauer, Bernhard Payer & Guillaume J. Filion - 2022 - Bioessays 44 (10):2200105.
    The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X‐chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause–consequence nexus between genome conformation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  5
    Lampbrush chromosome studies in the post‐genomic era.Alla Krasikova, Veniamin Fishman & Tatiana Kulikova - 2023 - Bioessays 45 (5):2200250.
    Extraordinary extended lampbrush chromosomes with thousands of transcription loops are favorable objects in chromosome biology. Chromosomes become lampbrushy due to unusually high rate of transcription during oogenesis. However, until recently, the information on the spectrum of transcribed sequences as well as genomic context of individual chromomeres was mainly limited to tandemly repetitive elements. Here we briefly outline novel findings and future directions in lampbrush chromosome studies in the post‐genomic era. We emphasize the fruitfulness of combining genome‐wide approaches with microscopy imaging (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  13
    Replisome‐Cohesin Interfacing: A Molecular Perspective.Sara Villa-Hernández & Rodrigo Bermejo - 2018 - Bioessays 40 (10):1800109.
    Cohesion is established in S‐phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  18
    Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA‐binding protein occupancy.Igor F. Zhimulev, Elena S. Belyaeva, Tatiana Yu Vatolina & Sergey A. Demakov - 2012 - Bioessays 34 (6):498-508.
    The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome‐wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000