4 found
Order:
See also
  1.  72
    A Means-End Account of Explainable Artificial Intelligence.Oliver Buchholz - 2023 - Synthese 202 (33):1-23.
    Explainable artificial intelligence (XAI) seeks to produce explanations for those machine learning methods which are deemed opaque. However, there is considerable disagreement about what this means and how to achieve it. Authors disagree on what should be explained (topic), to whom something should be explained (stakeholder), how something should be explained (instrument), and why something should be explained (goal). In this paper, I employ insights from means-end epistemology to structure the field. According to means-end epistemology, different means ought to be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  94
    The deep neural network approach to the reference class problem.Oliver Buchholz - 2023 - Synthese 201 (3):1-24.
    Methods of machine learning (ML) are gradually complementing and sometimes even replacing methods of classical statistics in science. This raises the question whether ML faces the same methodological problems as classical statistics. This paper sheds light on this question by investigating a long-standing challenge to classical statistics: the reference class problem (RCP). It arises whenever statistical evidence is applied to an individual object, since the individual belongs to several reference classes and evidence might vary across them. Thus, the problem consists (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  20
    Predicting and explaining with machine learning models: Social science as a touchstone.Oliver Buchholz & Thomas Grote - 2023 - Studies in History and Philosophy of Science Part A 102 (C):60-69.
    Machine learning (ML) models recently led to major breakthroughs in predictive tasks in the natural sciences. Yet their benefits for the social sciences are less evident, as even high-profile studies on the prediction of life trajectories have shown to be largely unsuccessful – at least when measured in traditional criteria of scientific success. This paper tries to shed light on this remarkable performance gap. Comparing two social science case studies to a paradigm example from the natural sciences, we argue that, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  68
    A Falsificationist Account of Artificial Neural Networks.Oliver Buchholz & Eric Raidl - forthcoming - The British Journal for the Philosophy of Science.
    Machine learning operates at the intersection of statistics and computer science. This raises the question as to its underlying methodology. While much emphasis has been put on the close link between the process of learning from data and induction, the falsificationist component of machine learning has received minor attention. In this paper, we argue that the idea of falsification is central to the methodology of machine learning. It is commonly thought that machine learning algorithms infer general prediction rules from past (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark