This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and Δ-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics–namely the class of algebras defined over the real unit (...) interval, the rational unit interval, the hyperreals , the strict hyperreals and finite chains, respectively–and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved. (shrink)
Residuated fuzzy logic calculi are related to continuous t-norms, which are used as truth functions for conjunction, and their residua as truth functions for implication. In these logics, a negation is also definable from the implication and the truth constant $\overline{0}$ , namely $\neg \varphi$ is $\varphi \to \overline{0}$. However, this negation behaves quite differently depending on the t-norm. For a nilpotent t-norm (a t-norm which is isomorphic to Łukasiewicz t-norm), it turns out that $\neg$ is an involutive negation. However, (...) for t-norms without non-trivial zero divisors, $\neg$ is Gödel negation. In this paper we investigate the residuated fuzzy logics arising from continuous t-norms without non-trivial zero divisors and extended with an involutive negation. (shrink)
A simple complete axiomatic system is presented for the many-valued propositional logic based on the conjunction interpreted as product, the coresponding implication (Goguen's implication) and the corresponding negation (Gödel's negation). Algebraic proof methods are used. The meaning for fuzzy logic (in the narrow sense) is shortly discussed.
The monoidal t-norm based logic MTL is obtained from Hájek''s Basic Fuzzy logic BL by dropping the divisibility condition for the strong (or monoidal) conjunction. Recently, Jenei and Montgana have shown MTL to be standard complete, i.e. complete with respect to the class of residuated lattices in the real unit interval [0,1] defined by left-continuous t-norms and their residua. Its corresponding algebraic semantics is given by pre-linear residuated lattices. In this paper we address the issue of standard and rational completeness (...) (rational completeness meaning completeness with respect to a class of algebras in the rational unit interval [0,1]) of some important axiomatic extensions of MTL corresponding to well-known parallel extensions of BL. Moreover, we investigate varieties of MTL algebras whose linearly ordered countable algebras embed into algebras whose lattice reduct is the real and/or the rational interval [0,1]. These embedding properties are used to investigate finite strong standard and/or rational completeness of the corresponding logics. (shrink)
This paper sheds new light on the subtle relation between probability and logic by (i) providing a logical development of Bruno de Finetti's conception of events and (ii) suggesting that the subjective nature of de Finetti's interpretation of probability emerges in a clearer form against such a logical background. By making explicit the epistemic structure which underlies what we call Choice-based probability we show that whilst all rational degrees of belief must be probabilities, the converse doesn't hold: some probability values (...) don't represent decision-relevant quantifications of uncertainty. (shrink)
In this paper we provide a finite axiomatization (using two finitary rules only) for the propositional logic (called $L\Pi$ ) resulting from the combination of Lukasiewicz and Product Logics, together with the logic obtained by from $L \Pi$ by the adding of a constant symbol and of a defining axiom for $\frac{1}{2}$ , called $L \Pi\frac{1}{2}$ . We show that $L \Pi \frac{1}{2}$ contains all the most important propositional fuzzy logics: Lukasiewicz Logic, Product Logic, Gödel's Fuzzy Logic, Takeuti and Titani's (...) Propositional Logic, Pavelka's Rational Logic, Pavelka's Rational Product Logic, the Lukasiewicz Logic with $\Delta$ , and the Product and Gödel's Logics with $\Delta$ and involution. Standard completeness results are proved by means of investigating the algebras corresponding to $L \Pi$ and $L \Pi \frac{1}{2}$ . For these algebras, we prove a theorem of subdirect representation and we show that linearly ordered algebras can be represented as algebras on the unit interval of either a linearly ordered field, or of the ordered ring of integers, Z. (shrink)
This article proposes the meeting of fuzzy logic with paraconsistency in a very precise and foundational way. Specifically, in this article we introduce expansions of the fuzzy logic MTL by means of primitive operators for consistency and inconsistency in the style of the so-called Logics of Formal Inconsistency (LFIs). The main novelty of the present approach is the definition of postulates for this type of operators over MTL-algebras, leading to the definition and axiomatization of a family of logics, expansions of (...) MTL, whose degree-preserving counterpart are paraconsistent and moreover LFIs. (shrink)
The monoidal t-norm based logic MTL is obtained from Hájek's Basic Fuzzy logic BL by dropping the divisibility condition for the strong conjunction. Recently, Jenei and Montgana have shown MTL to be standard complete, i.e. complete with respect to the class of residuated lattices in the real unit interval [0, 1] defined by left-continuous t-norms and their residua. Its corresponding algebraic semantics is given by pre-linear residuated lattices. In this paper we address the issue of standard and rational completeness of (...) some important axiomatic extensions of MTL corresponding to well-known parallel extensions of BL. Moreover, we investigate varieties of MTL algebras whose linearly ordered countable algebras embed into algebras whose lattice reduct is the real and/or the rational interval [0, 1]. These embedding properties are used to investigate finite strong standard and/or rational completeness of the corresponding logics. (shrink)
In this paper we show that the subvarieties of BL, the variety of BL-algebras, generated by single BL-chains on [0, 1], determined by continous t-norms, are finitely axiomatizable. An algorithm to check the subsethood relation between these subvarieties is provided, as well as another procedure to effectively find the equations of each subvariety. From a logical point of view, the latter corresponds to find the axiomatization of every residuated many-valued calculus defined by a continuous t-norm and its residuum. Actually, the (...) paper proves the results for a more general class than t-norm BL-chains, the so-called regular BL-chains. (shrink)
Betting methods, of which de Finetti's Dutch Book is by far the most well-known, are uncertainty modelling devices which accomplish a twofold aim. Whilst providing an interpretation of the relevant measure of uncertainty, they also provide a formal definition of coherence. The main purpose of this paper is to put forward a betting method for belief functions on MV-algebras of many-valued events which allows us to isolate the corresponding coherence criterion, which we term coherence in the aggregate. Our framework generalises (...) the classical Dutch Book method. (shrink)
In this paper we study and equationally characterize the subvarieties of BL, the variety of BL-algebras, which are generated by families of single-component BL-chains, i.e. MV-chains, Product-chain or Gödel-chains. Moreover, it is proved that they form a segment of the lattice of subvarieties of BL which is bounded by the Boolean variety and the variety generated by all single-component chains, called ŁΠG.
This paper aims at being a systematic investigation of different completeness properties of first-order predicate logics with truth-constants based on a large class of left-continuous t-norms . We consider standard semantics over the real unit interval but also we explore alternative semantics based on the rational unit interval and on finite chains. We prove that expansions with truth-constants are conservative and we study their real, rational and finite chain completeness properties. Particularly interesting is the case of considering canonical real and (...) rational semantics provided by the algebras where the truth-constants are interpreted as the numbers they actually name. Finally, we study completeness properties restricted to evaluated formulae of the kind , where φ has no additional truth-constants. (shrink)
ABSTRACT The term fuzzy logic has two different meanings -broad and narrow. In Zadeh's opinion, fuzzy logic is an extension of many- valued logic but having a different agenda—as generalized modus ponens, max-min inference, linguistic quantifiers etc. The question we address in this paper is whether there is something in Zadeh's specific agenda which cannot be grasped by “classiceli”, “traditional” mathematical logic. We show that much of fuzzy logic can be understood as classical deduction in a many-sorted many-valued Pavelka- Lukasiewicz (...) style rational quantification logic. This means that, besides the linguistic or approximation aspects, the logical aspect is present too and can be made explicit. (shrink)
Possibilistic logic and modal logic are knowledge representation frameworks sharing some common features, such as the duality between possibility and necessity, and the decomposability of necessity for conjunctions, as well as some obvious differences since possibility theory is graded. At the semantic level, possibilistic logic relies on possibility distributions and modal logic on accessibility relations. In the last 30 years, there have been a series of attempts for bridging the two frameworks in one way or another. In this paper, we (...) compare the relational semantics of epistemic logics with simpler possibilistic semantics of a fragment of such logics that only uses modal formulas of depth 1. This minimal epistemic logic handles both all-or-nothing beliefs and explicitly ignored facts. We also contrast epistemic logic with the S5-based rough set logic. Finally, this paper presents extensions of generalized possibilistic logic with objective and non-nested multimodal formulas, in the style of modal logics KD45 and S5. (shrink)
This paper initiates an investigation of conditional measures as simple measures on conditional events. As a first step towards this end we investigate the construction of conditional algebras which allow us to distinguish between the logical properties of conditional events and those of the conditional measures which we can be attached to them. This distinction, we argue, helps us clarifying both concepts.