Results for 'RNA-binding protein'

1000+ found
Order:
  1.  5
    The RNA‐binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity.Julie Deschênes-Furry, Nora Perrone-Bizzozero & Bernard J. Jasmin - 2006 - Bioessays 28 (8):822-833.
    AbstractmRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU‐rich elements (ARE) contained within the 3′ untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA‐binding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  31
    RNA Binding Proteins as Regulators of Retrotransposon‐Induced Exonization.John LaCava - 2019 - Bioessays 41 (2):1800263.
  3.  25
    Genomic Accumulation of Retrotransposons Was Facilitated by Repressive RNA‐Binding Proteins: A Hypothesis.Jan Attig & Jernej Ule - 2019 - Bioessays 41 (2):1800132.
    Retrotransposon-derived elements (RDEs) can disrupt gene expression, but are nevertheless widespread in metazoan genomes. This review presents a hypothesis that repressive RNA-binding proteins (RBPs) facilitate the large-scale accumulation of RDEs. Many RBPs bind RDEs in pre-mRNAs to repress the effects of RDEs on RNA processing, or the formation of inverted repeat RNA structures. RDE-binding RBPs often assemble on extended, multivalent binding sites across the RDE, which ensures repression of cryptic splice or polyA sites. RBPs thereby minimize the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  16
    Applications of Cas9 as an RNA‐programmed RNA‐binding protein.David A. Nelles, Mark Y. Fang, Stefan Aigner & Gene W. Yeo - 2015 - Bioessays 37 (7):732-739.
    The Streptococcus pyogenes CRISPR‐Cas system has gained widespread application as a genome editing and gene regulation tool as simultaneous cellular delivery of the Cas9 protein and guide RNAs enables recognition of specific DNA sequences. The recent discovery that Cas9 can also bind and cleave RNA in an RNA‐programmable manner indicates the potential utility of this system as a universal nucleic acid‐recognition technology. RNA‐targeted Cas9 (RCas9) could allow identification and manipulation of RNA substrates in live cells, empowering the study of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5.  4
    What the papers say: RNA‐binding proteins: Masking proteins revealed.John Sommerville - 1992 - Bioessays 14 (5):337-339.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    The role of thymidylate synthase as an RNA binding protein.Edward Chu & Carmen J. Allegra - 1996 - Bioessays 18 (3):191-198.
    Thymidylate synthase plays a central role in the biosynthesis of thymidylate, an essential precursor for DNA biosynthesis. In addition to its role in catalysis and cellular metabolism, it is now appreciated that thymidylate synthase functons as an RNA binding protein. Specifically, thymidylate synthase binds with high affinity to its own mRNA, resulting in translational repression. An extensive series of experiments has been performed to elucidate the molecular elements underlying the interaction between thymidylate synthase and its own mRNA. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  19
    How do ADARs bind RNA? New protein‐RNA structures illuminate substrate recognition by the RNA editing ADARs.Justin M. Thomas & Peter A. Beal - 2017 - Bioessays 39 (4):1600187.
    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X‐ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  13
    Deciphering the protein‐RNA recognition code: Combining large‐scale quantitative methods with structural biology.Janosch Hennig & Michael Sattler - 2015 - Bioessays 37 (8):899-908.
    RNA binding proteins (RBPs) are key factors for the regulation of gene expression by binding to cis elements, i.e. short sequence motifs in RNAs. Recent studies demonstrate that cooperative binding of multiple RBPs is important for the sequence‐specific recognition of RNA and thereby enables the regulation of diverse biological activities by a limited set of RBPs. Cross‐linking immuno‐precipitation (CLIP) and other recently developed high‐throughput methods provide comprehensive, genome‐wide maps of protein‐RNA interactions in the cell. Structural biology (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  8
    The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.Michael Doyle, Lukas Badertscher, Lukasz Jaskiewicz, Stephan Güttinger, Sabine Jurado, Tabea Hugenschmidt, Ulrike Kutay & Witold Filipowicz - unknown
    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and doublestranded RNA into ~21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  27
    Impact of RNA–Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5.Rosario Francisco-Velilla, Embarc-Buh Azman & Encarnacion Martinez-Salas - 2019 - Bioessays 41 (4):1800241.
    The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA‐binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA‐binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA–protein interactions. Increasing evidence highlights the biological relevance of RNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  16
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  14
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  18
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  12
    CLIPing Staufen to secondary RNA structures: Size and location matter!Sandra M. Fernández Moya & Michael A. Kiebler - 2015 - Bioessays 37 (10):1062-1066.
    hiCLIP (RNA hybrid and individual‐nucleotide resolution ultraviolet cross‐linking and immunoprecipitation), is a novel technique developed by Sugimoto et al. (2015). Here, the use of different adaptors permits a controlled ligation of the two strands of a RNA duplex allowing the identification of each arm in the duplex upon sequencing. The authors chose a notoriously difficult to study double‐stranded RNA‐binding protein (dsRBP) termed Staufen1, a mammalian homolog of Drosophila Staufen involved in mRNA localization and translational control. Using hiCLIP, they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  4
    Evolution of the gelsolin family of actin-binding proteins as novel transcriptional coactivators.Stuart K. Archer, Charles Claudianos & Hugh D. Campbell - 2005 - Bioessays 27 (4):388-396.
    The gelsolin gene family encodes a number of higher eukaryotic actin-binding proteins that are thought to function in the cytoplasm by severing, capping, nucleating or bundling actin filaments. Recent evidence, however, suggests that several members of the gelsolin family may have adopted unexpected nuclear functions including a role in regulating transcription. In particular, flightless I, supervillin and gelsolin itself have roles as coactivators for nuclear receptors, despite the fact that their divergence appears to predate the evolutionary appearance of nuclear (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  22
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by (...) to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  4
    The pleiotropic functions of the Y‐box‐binding protein, YB‐1.Kimitoshi Kohno, Hiroto Izumi, Takeshi Uchiumi, Megumi Ashizuka & Michihiko Kuwano - 2003 - Bioessays 25 (7):691-698.
    The Y‐box‐binding protein (YB‐1) represents the most evolutionary conserved nucleic‐acid‐binding protein currently known. YB‐1 is a member of the cold‐shock domain (CSD) protein superfamily. It performs a wide variety of cellular functions, including transcriptional regulation, translational regulation, DNA repair, drug resistance and stress responses to extracellular signals. As a result, YB‐1 expression is closely associated with cell proliferation. In this review, we will begin by briefly describing the characteristics of YB‐1 and will then summarize the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  1
    Structural and functional properties of the evolutionarily ancient Y‐box family of nucleic acid binding proteins.Alan P. Wolffe - 1994 - Bioessays 16 (4):245-251.
    The Y‐box proteins are the most evolutionarily conserved nucleic acid binding proteins yet defined in bacteria, plants and animals. The central nucleic acid binding domain of the vertebrate proteins is 43% identical to a 70‐amino‐acid‐long protein (CS7.4) from E. coli. The structure of this domain consists of an antiparallel fivestranded β‐barrel that recognizes both DNA and RNA. The diverse biological roles of these Y‐box proteins range from the control of the E. coli cold‐shock stress response to the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  19.  10
    Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA‐binding protein occupancy.Igor F. Zhimulev, Elena S. Belyaeva, Tatiana Yu Vatolina & Sergey A. Demakov - 2012 - Bioessays 34 (6):498-508.
    The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome‐wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  1
    Promiscuity in protein‐RNA interactions: Conformational ensembles facilitate molecular recognition in the spliceosome.David D. Boehr - 2012 - Bioessays 34 (3):174-180.
    Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre‐exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF65 fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA (...) pockets are accessible. RNA binding to U2AF65 may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF65 might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3′ splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  5
    Orchestrating ribosomal RNA folding during ribosome assembly.Michaela Oborská-Oplová, Stefan Gerhardy & Vikram Govind Panse - 2022 - Bioessays 44 (8):2200066.
    Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three‐dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error‐prone RNA folding process. Following these dynamic events, long‐range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  10
    Alternative polyadenylation in the nervous system: To what lengths will 3′ UTR extensions take us?Pedro Miura, Piero Sanfilippo, Sol Shenker & Eric C. Lai - 2014 - Bioessays 36 (8):766-777.
    Alternative cleavage and polyadenylation (APA) can diversify coding and non‐coding regions, but has particular impact on increasing 3′ UTR diversity. Through the gain or loss of regulatory elements such as RNA binding protein and microRNA sites, APA can influence transcript stability, localization, and translational efficiency. Strikingly, the central nervous systems of invertebrate and vertebrate species express a broad range of transcript isoforms bearing extended 3′ UTRs. The molecular mechanism that permits proximal 3′ end bypass in neurons is mysterious, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  28
    RNAs, Phase Separation, and Membrane‐Less Organelles: Are Post‐Transcriptional Modifications Modulating Organelle Dynamics?Aleksej Drino & Matthias R. Schaefer - 2018 - Bioessays 40 (12):1800085.
    Membranous organelles allow sub‐compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane‐less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid–liquid phase separation (LLPS), and is primarily governed by the interactions of multi‐domain proteins or proteins harboring intrinsically disordered regions as well as RNA‐binding domains. Although the presence of RNAs affects the formation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  6
    Genotoxic stress response: What is the role of cytoplasmic mRNA fate?Gayatri Mohanan, Amiyaranjan Das & Purusharth I. Rajyaguru - 2021 - Bioessays 43 (8):2000311.
    Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well‐orchestrated cellular response is mounted to manage and repair the genotoxic stress‐induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  1
    MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post‐transcriptional gene regulation.Anneke Brümmer & Jean Hausser - 2014 - Bioessays 36 (6):617-626.
    It is well established that microRNAs (miRNAs) induce mRNA degradation by binding to 3′ untranslated regions (UTRs). The functionality of sites in the coding domain sequence (CDS), on the other hand, remains under discussion. Such sites have limited impact on target mRNA abundance and recent work suggests that miRNAs bind in the CDS to inhibit translation. What then could be the regulatory benefits of translation inhibition through CDS targeting compared to mRNA degradation following 3′ UTR binding? We propose (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  3
    A case of convergent evolution of nucleic acid binding modules.Peter Graumann & Moharned A. Marahiel - 1996 - Bioessays 18 (4):309-315.
    Divergent evolution can explain how many proteins containing structurally similar domains, which perform a variety of related functions, have evolved from a relatively small number of modules or protein domains. However, it cannot explain how protein domains with similar, but distinguishable, functions and similar, but distinguishable, structures have evolved. Examples of this are the RNA‐binding proteins containing the RNA‐binding domain (RBD), and a newly established protein group, the cold‐shock domain (CSD) protein family. Both (...) domains contain conserved RNP motifs on similar single‐stranded nucleic acid‐binding surfaces. Apart from the RNP motifs, which have a similar function, the two families show little similarity in topology or amino acid sequence. This can be considered an interesting example of convergent evolution at the molecular level. Previously, a β‐sheet surface was found to interact with RNA in non‐homologous proteins from yeast, phage and man, revealing that this mode of RNA binding may be a widely recurring theme. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  27.  6
    Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function.Michael Briese & Michael Sendtner - 2021 - Bioessays 43 (8):2100092.
    The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P‐TEFb. Release of P‐TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P‐TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  13
    Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism.Pankaj Thapa, Nilesh Shanmugam & Wojciech Pokrzywa - 2020 - Bioessays 42 (1):1900171.
    The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin–proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  8
    Protection of germline immortality by the soma via a secreted endoribonuclease.Wenjing Qi, Fan Xu, Thomas Heimbucher & Ralf Baumeister - 2021 - Bioessays 43 (12):2100195.
    In sexually reproducing organisms maintenance of germ stem cell immortality is fundamental for transmitting genetic material to future generations. While previous research has mainly considered intrinsic regulatory mechanisms in the germline, our recent study has found a direct contribution of somatic cells in preserving germline immortality via the somatically expressed endoribonuclease ENDU‐2 in Caenorhabditis elegans. We have identified ENDU‐2 as a secreted protein that can be taken up by the germline. Here, we discuss how ENDU‐2 might uncouple its RNA‐ (...) and RNA‐cleavage activities to control gene expression via either an endoribonuclease dependent or an independent way. We also speculate on a possible functional conservation of its mammalian homologs in mediating cell‐cell communication as well as its potential significance in understanding human pathogenesis such as cancer development. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  25
    The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways.Konstantin Licht & Michael F. Jantsch - 2017 - Bioessays 39 (11):1700129.
    The RNA editing enzyme ADAR1 seemingly has more functions besides RNA editing. Mouse models lacking ADAR1 and sensors of foreign RNA show that RNA editing by ADAR1 plays a crucial role in the innate immune response. Still, RNA editing alone cannot explain all observed phenotypes. Thus, additional roles for ADAR1 must exist. Binding of ADAR1 to RNA is independent of its RNA editing function. Thus, ADAR1 may compete with other RNA-binding proteins. A very recent manuscript elaborates on this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  7
    Problems and paradigms: Multifunctional proteins suggest connections between transcriptional and post‐transcriptional processes.Michael Ladomery - 1997 - Bioessays 19 (10):903-909.
    Recent findings indicate that substantial cross‐talk may exist between transcriptional and post‐transcriptional processes. Firstly, there are suggestions that specific promoters influence the post‐transcriptional fate of transcripts, pointing to communication between protein complexes assembled on DNA and nascent pre‐mRNA. Secondly, an increasing number of proteins appear to be multifunctional, participating in transcriptional and post‐transcriptional events. The classic example is TFIIIA, required for both the transcription of 5S rRNA genes and the packaging of 5S rRNA. TFIIIA is now joined by the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  1
    Iron regulatory proteins 1 and 2.Beric R. Henderson - 1996 - Bioessays 18 (9):739-746.
    Iron uptake and storage in mammalian cells is at least partly regulated at a posttranscriptional level by the iron regulatory proteins (IRP‐1 and IRP‐2). These cytoplasmic regulators share 79% similarity in protein sequence and bind tightly to conserved mRNA stem‐loops, named iron‐responsive elements (IREs). The IRP:IRE interaction underlies the regulation of translation and stability of several mRNAs central to iron metabolism. The question of why the cell requires two such closely related regulatory proteins may be resloved as we learn (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  3
    Transcription by RNA polymerase II: A process linked to DNA repair.Christian Chalut, Vincent Moncollin & Jean Marc Egly - 1994 - Bioessays 16 (9):651-655.
    The proteins that are implicated in the basal transcription of protein coding genes have now been identified. Although little is known about their function, recent data demonstrate the ability of these proteins, previously called class II transcription factors, to participate in other reactions: TBP, the TATA‐box binding factor, is involved in class I and III transcription, while TFIIH has been shown to possess components that are involved in the DNA repair mechanism. The involvement of some if not all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  3
    Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm.Miles F. Wilkinson & Ann-Bin Shyu - 2001 - Bioessays 23 (9):775-787.
    The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre‐messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript‐ and cell‐type‐specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA‐ and DNA‐ (...) proteins that are localized either only in the nucleus or only the cytoplasm. Here, we describe multifunctional proteins that control both nuclear and cytoplasmic steps of gene expression. One such class of multifunctional proteins (e.g., Bicoid and Y‐box proteins) regulates both transcription and translation whereas another class (e.g., Sex‐lethal) regulates both nuclear RNA processing and translation. Other events controlled by multifunctional proteins include assembly of spliceosome components, spliceosome recycling, RNA editing, cytoplasmic mRNA localization, and cytoplasmic RNA stability. The existence of multifunctional proteins may explain the paradoxical involvement of the nucleus in an RNA surveillance pathway (nonsense‐mediated decay) that detects cytoplasmic signals (premature termination codons). We speculate that shuttling multifunctional proteins serve to efficiently link RNA metabolism in the cytoplasmic and nuclear compartments. BioEssays 23:775–787, 2001. © 2001 John Wiley & Sons, Inc. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  26
    Initiated by CREB: Resolving Gene Regulatory Programs in Learning and Memory.Jenifer C. Kaldun & Simon G. Sprecher - 2019 - Bioessays 41 (8):1900045.
    Consolidation of long-term memory is a highly and precisely regulated multistep process. The transcription regulator cAMP response element-binding protein (CREB) plays a key role in initiating memory consolidation. With time processing, first the cofactors are changed and, secondly, CREB gets dispensable. This ultimately changes the expressed gene program to genes required to maintain the memory. Regulation of memory consolidation also requires epigenetic mechanisms and control at the RNA level. At the neuronal circuit level, oscillation in the activity of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  9
    Nucleocytoplasmic trafficking of proteins: With or without Ran?Ursula Stochaj & Katherine L. Rother - 1999 - Bioessays 21 (7):579-589.
    Proteins and RNAs move between the nucleus and cytoplasm by translocation through nuclear pore complexes in the nuclear envelope. To do this, they require specific targeting signals, energy, and a cellular apparatus that catalyzes their transport. Several of the factors involved in nucleocytoplasmic trafficking of proteins have been identified and characterized in some detail. The emerging picture for nuclear transport proposes a central role for the small GTPase Ran and proteins with which it interacts. In particular, asymmetric distribution of these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  4
    The end of the message: 3'– end processing leading to polyadenylated messenger RNA.Elmar Wahle - 1992 - Bioessays 14 (2):113-118.
    Almost all messenger RNAs carry a polyadenylate tail that is added in a post‐transcriptional reaction. In the nuclei of animal cells, the 3'‐end of the RNA is formed by endonucleolytic cleavage of the primary transcript at the site of poly (A) addition, followed by the polymerisation of the tail. The reaction depends on specific RNA sequences upstream as well as downstream of the polyadenylation site. Cleavage and polyadenylation can be uncoupled in vitro. Polyadenylation is carried out by poly(A) polymerase with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  3
    The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism.Florian Weighardt, Giuseppe Biamonti & Silvano Riva - 1996 - Bioessays 18 (9):747-756.
    In eukaryotic cells, messenger RNAs are formed by extensive posttranscriptional processing of primary transcripts, assembled with a large number of proteins and processing factors in ribonucleoprotein complexes. The protein moiety of these complexes mainly constitutes a class of about 20 major polypeptides called heterogeneous nuclear ribonucleoproteins or hnRNPs. The function and the mechanism of action of hnRNPs is still not fully understood, but the identification of RNA binding domains and RNA binding specificities, and the development of new (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  5
    Regulation and function of poised mRNAs in lymphocytes.Martin Turner - 2023 - Bioessays 45 (5):2200236.
    Pre‐existing but untranslated or ‘poised’ mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  27
    Retrotransposon‐derived p53 binding sites enhance telomere maintenance and genome protection.Paul M. Lieberman - 2016 - Bioessays 38 (10):943-949.
    Tumor suppressor protein 53 (p53) plays a central role in the control of genome stability, acting primarily through the transcriptional activation of stress‐response genes. However, many p53 binding sites are located at genomic locations with no obvious regulatory‐link to known stress‐response genes. We recently discovered p53 binding sites within retrotransposon‐derived elements in human and mouse subtelomeres. These retrotransposon‐derived p53 binding sites protected chromosome ends through transcription activation of telomere repeat RNA, as well as through the direct (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  8
    The RNA dreamtime.Charles G. Kurland - 2010 - Bioessays 32 (10):866-871.
    Modern cells present no signs of a putative prebiotic RNA world. However, RNA coding is not a sine qua non for the accumulation of catalytic polypeptides. Thus, cellular proteins spontaneously fold into active structures that are resistant to proteolysis. The law of mass action suggests that binding domains are stabilized by specific interactions with their substrates. Random polypeptide synthesis in a prebiotic world has the potential to initially produce only a very small fraction of polypeptides that can fold spontaneously (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  30
    Exaptive origins of regulated mRNA decay in eukaryotes.Fursham M. Hamid & Eugene V. Makeyev - 2016 - Bioessays 38 (9):830-838.
    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  5
    Investigating proteinprotein interfaces in bacterial transcription complexes: a fragmentation approach.Patricia C. Burrows - 2003 - Bioessays 25 (12):1150-1153.
    Transcription initiation by σ54–RNA polymerase (RNAP) relies explicitly on a transient interaction with a complex molecular machine belonging to the AAA+ (ATPases associated with various cellular activities) superfamily. Members of the AAA+ superfamily convert chemical energy derived from NTP hydrolysis to a mechanical force used to remodel their target substrate. Recently Bordes and colleagues,1 using a protein fragmentation approach, identified a unique sequence within σ54‐dependent transcriptional activators that constitutes a σ54‐binding interface. This interface is not static, but subject (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  6
    The interactions of transcription factors and their adaptors, coactivators and accessory proteins.Katherine J. Martin - 1991 - Bioessays 13 (10):499-503.
    Consistent with the complexity of the temporally regulated processes that must occur for growth and development of higher eukaryotes, it is now apparent that transcription is regulated by the formation of multi‐component complexes that assemble on the promoters of genes. These complexes can include (in addition to the five or more general transcription factors and RNA polymerase II) DNA‐binding proteins, transcriptional activators, coactivators, adaptors and various accessory proteins. The best studied example of a complex that includes a transcriptional adaptor, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  22
    DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond.Olga Zaytseva & Leonie M. Quinn - 2018 - Bioessays 40 (4):1700235.
    Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  4
    WT1: what has the last decade told us?Melissa Little, Greg Holmes & Patrick Walsh - 1999 - Bioessays 21 (3):191-202.
    When positionally cloned in late 1989, it was anticipated that mutations within the Wilms' tumour suppressor gene (WT1) would prove responsible for this common solid kidney cancer of childhood. Characterisation of the WT1 expression pattern and of the structure of the encoded protein isoforms and their mode of action has now spanned almost a decade. WT1 proteins act as nucleic acid-binding zinc finger-containing transcription factors involved in both transactivation and repression. These activities are facilitated and constrained by interactions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  3
    Signaling activation and repression of RNA polymerase II transcription in yeast.Richard J. Reece & Adam Platt - 1997 - Bioessays 19 (11):1001-1010.
    Activators of RNA polymerase II transcription possess distinct and separable DNA‐binding and transcriptional activation domains. They are thought to function by binding to specific sites on DNA and interacting with proteins (transcription factors) binding near to the transcriptional start site of a gene. The ability of these proteins to activate transcription is a highly regulated process, with activation only occurring under specific conditions to ensure proper timing and levels of target gene expression. Such regulation modulates the ability (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48. Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells.Gazave Eve, Béhague Julien, Lucie Laplane, Guillou Aurélien, Demilly Adrien, Balavoine Guillaume & Vervoort Michel - 2013 - Developmental Biology 1 (382):246-267.
    Like most bilaterian animals, the annelid Platynereis dumerilii generates the majority of its body axis in an anterior to posterior temporal progression with new segments added sequentially. This process relies on a posterior subterminal proliferative body region, known as the "segment addition zone" (SAZ). We explored some of the molecular and cellular aspects of posterior elongation in Platynereis, in particular to test the hypothesis that the SAZ contains a specific set of stem cells dedicated to posterior elongation.We cloned and characterized (...)
     
    Export citation  
     
    Bookmark  
  49.  8
    The molecular genetics of male infertility.David J. Elliott & Howard J. Cooke - 1997 - Bioessays 19 (9):801-809.
    Spermatogenesis is an elaborate process involving both cell division and differentiation, and cell‐cell interactions. Defects in any of these processes can result in infertility, and in some cases these can be genetic in cause. Mapping experiments have defined at least three regions of the human Y chromosome that are required for normal spermatogenesis. Two of these contain the genes encoding the RNA binding proteins RBM and DAZ, suggesting that the control of RNA metabolism is likely to be an important (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  5
    The chromosomal signal for sex determination in Caenorhabditis elegans.Philip M. Meneely - 1997 - Bioessays 19 (11):945-948.
    In Caenorhabditis elegans, sex is determined by the number of X chromosomes which, in turn, determines the expression of the X‐linked gene xol‐1. Recent work(1) has shown that xol‐1 expression is controlled by least two distinct regulatory mechanisms, one transcriptional and another post‐transcriptional. The transcriptional regulator is a repressor acting in XX embryos; although the specific gene has not been identified, the chromosome region has been defined. A previously defined regulator of xol‐1, known as fox‐1, maps to a different region (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000