The aim of the paper is to develop the notion of partial probability distributions as being more realistic models of belief systems than the standard accounts. We formulate the theory of partial probability functions independently of any classical semantic notions. We use the partial probability distributions to develop a formal semantics for partial propositional calculi, with extensions to predicate logic and higher order languages. We give a proof theory for the partial logics and obtain soundness and completeness results.
In this paper, we introduce a Hilbert style axiomatic calculus for intutionistic logic with strong negation. This calculus is a preservative extension of intuitionistic logic, but it can express that some falsity are constructive. We show that the introduction of strong negation allows us to define a square of opposition based on quantification on possible worlds.
The aim of this paper is to present a strongly complete first order functional predicate calculus generalized to models containing not only ordinary classical total functions but also arbitrary partial functions. The completeness proof follows Henkin’s approach, but instead of using maximally consistent sets, we define saturated deductively closed consistent sets . This provides not only a completeness theorem but a representation theorem: any SDCCS defines a canonical model which determine a unique partial value for every predicate symbol and any (...) function symbol. Any SDCCS can thus be interpreted as an epistemic state. (shrink)
This paper presents a generalization of a proposal of van Benthem’s who has shown how to provide a canonical name for any object in propositional type theory. Van Benthem’s idea is to characterize any function in the hierarchy by the Boolean values the function takes for any sequence of arguments. The recursive definition of canonical names uses only the abstraction, functional application, the identity operator and the fact that we have a name for the true and the false. We show (...) that this result can be extended to the finite theory of types by the introduction of an algebra on individuals. (shrink)
This paper is composed of two independent parts. The first is concerned with Russell’s early philosophy of mathematics and his quarrel with Poincaré about the nature of their opposition. I argue that the main divergence between the two philosophers was about the nature of definitions. In the second part, I briefly present Le!niewski’s Ontology and suggest that Le!niewski’s original treatment of definitions in the foundations of mathematics is the natural solution to the problem that divided Russell and Poincaré.
This paper is composed of two independent parts. The first is concerned with Russell’s early philosophy of mathematics and his quarrel with Poincaré about the nature of their opposition. I argue that the main divergence between the two philosophers was about the nature of definitions. In the second part, I briefly present Lesniewski’s Ontology and suggest that Lesniewski’s original treatment of definitions in the foundations of mathematics is the natural solution to the problem that divided Russell and Poincaré.
SummaryIn this paper I will strive towards three main objectives. First of all, I will try to show that a very commonplace property of knowledge, that of yielding truth, can be used to characterize an ideal and radical notion of knowledge. It will be argued that this property generates a basic and autonomous concept of knowledge, i.e., a purely logical concept of knowledge that can be clearly separated from the psychological, intentional or epistemological aspects of knowledge. What results can thus (...) be regarded as a kind of reduction of the concept of knowledge to that of truth. This reduction will be expressed by means of a criterion which a relation between an agent and a sentence must satisfy in order to be interpreted as exemplifying the relation of knowing.Secondly, 1 will offer an analysis of presuppositional knowledge which shows how the very strong and ideal notion of knowledge previously developed can be useful in interpreting the ordinary use of “knowing”.My third and last objective will be to use this criterion to characterize formally the semantic interpretation associated to a rational and competent agent, i.e. the space of his knowledge. (shrink)
La théorie des types que Bertrand Russell proposa en 1908 ne se voulait pas une solution ad hoc au problème des contradictions, elle prétendait plutôt être la solution naturelle, celle que tout le monde reconnaîtra comme la solution attendue. En fait, il s'agit d'une théorie philosophique qui concrétise un projet grandiose: réduire les mathématiques à la logique. Le présent texte se propose d'examiner les thèses russelliennes et la dynamique de leur évolution de 1903 à 1907, c'est-à-dire des Principles à la (...) naissance de la théorie des types.The theory of types that Bertrand Russell proposed in 1908 didn't present itself as an ad hoc solution to the problem of contradictions. Rather it pretended to be the natural solution, the one that everybody would recognize as the expected solution. In fact, it is a philosophical theory materializing an imposing project: to reduce mathematics to logic. This paper examines the russellian theses and their evolution from 1903 to 1907 i.e. from the Principles to the birth of the theory of types. (shrink)
Le but de cette intervention est tout d'abord de caractériser un concept de sémantique d'un point de vue suffisamment général pour que l'on puisse l'interpréter comme celui de sémantique universelle. Dans un deuxième temps, il sera question de la caractérisation des contextes extensionnels et un critère général d'identification de tels contextes sera proposé. La thèse suivante, assez surprenante, sera avancée : selon ce critère, les contextes d'attitudes propositionnelles sont extensionnels. La solution que l'on proposera pour sortir de cette situation apparemment (...) paradoxale sera justement de l'interpréter comme un indice du caractère non sémantique du problème des attitudes propositionnelles. Finalement, une voie de solution au puzzle de Kripke sera proposée.The aim of this paper is first to characterize a concept of semantics from such a general point of view that it could be considered as the concept of universal semantics. Extensional contexts will then be characterized and a general identification criterion for such contexts will be given. The following rather surprising thesis will be put forward : According to this criterion, propositional attitude contexts are extensional. The proposed solution to this seemingly paradoxical situation will be to consider propositional attitude contexts as non semantic. Finally, a way out to Kripke's puzzle is propounded. (shrink)
This paper has four parts. In the first part, I present Leniewski's protothetics and the complete system provided for that logic by Henkin. The second part presents a generalized notion of partial functions in propositional type theory. In the third part, these partial functions are used to define partial interpretations for protothetics. Finally, I present in the fourth part a complete system for partial protothetics. Completeness is proved by Henkin's method [4] using saturated sets instead of maximally saturated sets. This (...) technique provides a canonical representation of a partial semantic space and it is suggested that this space can be interpreted as an epistemic state of a non-omniscient agent. (shrink)
Parmi l'ensemble de toutes les propositions à propos desquelles un agent rationnel entretient des croyances et des désirs, certaines correspondent à des actes que l'agent juge faisables. Le but de mon intervention est de caractériser ce sous-ensemble de propositions en termes de leur probabilité et de leur désirabilité.Among the set of all propositions on which a rational agent entertains beliefs and desires, some express acts considered as possible options for the agent. The aim of this paper is to characterize this (...) subset of propositions in terms of their probability and their desirability. (shrink)
La théorie des descriptions de Bertrand Russell est sans aucun doute l'une des thèses philosophiques qui, au vingtième siècle, ont donné lieu au plus grand nombre de commentaires, de critiques, voire de querelles. Portée aux nues par certains-Ramsey l'a qualifiée de ‘paradigme de philosophie’-elle sera violemment contestée par d'autres, en particulier par Strawson qui s'avisera, quelque quarantecinq ans plus tard, qu'elle comporte des ‘erreurs fondamentales.’.
Cet article se veut une critique de la thèse défendue par [Cleland 1993], laquelle soutient que la thèse de Church doit être rejetée puisque les limites du calcul dépendent de la structure physique du monde. Dans un premier temps, nous offrons un bref aperçu de la thèse de Church puis nous présentons l argument de Cleland. Par la suite, nous proposons une analyse critique de son argument, ce qui nous amènera à faire quelques distinctions conceptuelles par rapport aux notions qui (...) concernent la calculabilité. Finalement, nous montrons que les limites du calcul ne sont pas physiques mais bien logiques. En résumé, notre argument est que les limites du calcul sont déterminées en partie par le fait qu’une procédure effective doit pouvoir être décrite de manière finie.Even though Church’s thesis is widely accepted among mathematicians, it is nonetheless controversial. In this paper, we argue against the position of [Cleland 1993], which defends that Church s thesis must be rejected because the limits of computation depend upon the physical structure of the world. We first give a brief overview of Church’s thesis and then we present Cleland s argument. We then propose a critical analysis of Cleland s argument, which will involve some conceptual distinctions regarding the notion of computability, and finally we will show that the limits of computation are not physical but logical. In short, we argue that computation is limited by the fact that an effective procedure must be described in a finite way. (shrink)
Cet article se veut une critique de la thèse défendue par [Cleland 1993], laquelle soutient que la thèse de Church doit être rejetée puisque les limites du calcul dépendent de la structure physique du monde. Dans un premier temps, nous offrons un (très) bref aperçu de la thèse de Church puis nous présentons l argument de Cleland. Par la suite, nous proposons une analyse critique de son argument, ce qui nous amènera à faire quelques distinctions conceptuelles par rapport aux notions (...) qui concernent la calculabilité. Finalement, nous montrons que les limites du calcul ne sont pas physiques mais bien logiques. En résumé, notre argument est que les limites du calcul sont déterminées en partie par le fait qu’une procédure effective doit pouvoir être décrite de manière finie. (shrink)