Results for 'QFT'

104 found
Order:
  1.  15
    Relativistic QFT from a Bohmian Perspective: A Proof of Concept.Hrvoje Nikolić - 2022 - Foundations of Physics 52 (4):1-18.
    Since Bohmian mechanics is explicitly nonlocal, it is widely believed that it is very hard, if not impossible, to make Bohmian mechanics compatible with relativistic quantum field theory. I explain, in simple terms, that it is not hard at all to construct a Bohmian theory that lacks Lorentz covariance, but makes the same measurable predictions as relativistic QFT. All one has to do is to construct a Bohmian theory that makes the same measurable predictions as QFT in one Lorentz frame, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2. QFT, antimatter, and symmetry.David Wallace - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):209-222.
    A systematic analysis is made of the relations between the symmetries of a classical field and the symmetries of the one-particle quantum system that results from quantizing that field in regimes where interactions are weak. The results are applied to gain a greater insight into the phenomenon of antimatter.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  3.  4
    The pragmatic QFT measurement problem and the need for a Heisenberg-like cut in QFT.Daniel Grimmer - 2023 - Synthese 202 (4):1-45.
    Despite quantum theory’s remarkable success at predicting the statistical results of experiments, many philosophers worry that it nonetheless lacks some crucial connection between theory and experiment. Such worries constitute the Quantum Measurement Problems. One can broadly identify two kinds of worries: (1) pragmatic: it is unclear how to model our measurement processes in order to extract experimental predictions, and (2) realist: we lack a satisfying metaphysical account of measurement processes. While both issues deserve attention, the pragmatic worries have worse consequences (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  52
    A persistent particle ontology for QFT in terms of the Dirac sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - forthcoming - British Journal for the Philosophy of Science.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to QFT. By means of the Dirac sea model – exemplified in the electron sector of the standard model neglecting radiation – we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  5.  31
    SSB: QSM vs. QFT.Doreen Fraser - 2012 - Philosophy of Science 79:905-916.
    Philosophical analysis of spontaneous symmetry breaking in particle physics has been hindered by the unavailability of rigorous formulations of models in quantum field theory. A strategy for addressing this problem is to use the rigorous models that have been constructed for SSB in quantum statistical mechanics systems as a basis for drawing analogous conclusions about SSB in QFT. Based on an analysis of this strategy as an instance of the application of the same mathematical formalism to different domains and as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  30
    The Quantum Field Theory (QFT) Dual Paradigm in Fundamental Physics and the Semantic Information Content and Measure in Cognitive Sciences.Gianfranco Basti - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli (eds.), Representation of Reality: Humans, Other Living Organism and Intelligent Machines. Heidelberg: Springer.
    In this paper we explore the possibility of giving a justification of the “semantic information” content and measure, in the framework of the recent coalgebraic approach to quantum systems and quantum computation, extended to QFT systems. In QFT, indeed, any quantum system has to be considered as an “open” system, because it is always interacting with the background fluctuations of the quantum vacuum. Namely, the Hamiltonian in QFT always includes the quantum system and its inseparable thermal bath, formally “entangled” like (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  6
    Weinberg on QFT: Demonstrative induction and underdetermination.Jonathan Bain - 1998 - Synthese 117 (1):1-30.
    In this essay I examine a recent argument by Steven Weinberg that seeks to establish local quantum field theory as the only type of quantum theory in accord with the relevent evidence and satisfying two basic physical principles. I reconstruct the argument as a demonstrative induction and indicate it's role as a foil to the underdetermination argument in the debate over scientific realism.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  8. Quantum Information in Relativity: The Challenge of QFT Measurements.C. Anastopoulos & N. Savvidou - 2022 - Entropy 24:4.
    Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important. In this essay, we argue that a proper extension of quantum information theory into the relativistic domain requires the expression of all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a working and practicable theory of QFT measurements. We present the foundational problems in constructing such a theory, especially in relation to longstanding causality and (...)
     
    Export citation  
     
    Bookmark   1 citation  
  9.  4
    Against particle/field duality: Asymptotic particle states and interpolating fields in interacting qft (or: Who's afraid of Haag's theorem?). [REVIEW]Jonathan Bain - 2000 - Erkenntnis 53 (3):375-406.
    This essay touches on a number of topics in philosophy of quantum field theory from the point of view of the LSZ asymptotic approach to scattering theory. First, particle/field duality is seen to be a property of free field theory and not of interacting QFT. Second, it is demonstrated how LSZ side-steps the implications of Haag's theorem. Finally, a recent argument due to Redhead, Malament and Arageorgis against the concept of localized particle states is addressed. Briefly, the argument observes that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  10. On a time-space operator (and other non-selfadjoint operators) for observables in QM and QFT.Erasmo Recami, Michel Zamboni-Rached & Ignazio Licata - 2016 - In Ignazio Licata (ed.), Beyond peaceful coexistence: the emergence of space, time and quantum. London: Imperial College Press.
     
    Export citation  
     
    Bookmark  
  11.  10
    Appendix: Ontological relativity and fundamentality – is QFT the fundamental theory?Tian Yu Cao - 2003 - Synthese 136 (1):25 - 30.
  12.  53
    Clifford Space as a Generalization of Spacetime: Prospects for QFT of Point Particles and Strings. [REVIEW]Matej Pavšič - 2005 - Foundations of Physics 35 (9):1617-1642.
    The idea that spacetime has to be replaced by Clifford space (C-space) is explored. Quantum field theory (QFT) and string theory are generalized to C-space. It is shown how one can solve the cosmological constant problem and formulate string theory without central terms in the Virasoro algebra by exploiting the peculiar pseudo-Euclidean signature of C-space and the Jackiw definition of the vacuum state. As an introduction into the subject, a toy model of the harmonic oscillator in pseudo-Euclidean space is studied.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  66
    Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT. [REVIEW]E. K. Akhmedov & A. Y. Smirnov - 2011 - Foundations of Physics 41 (8):1279-1306.
    We consider several subtle aspects of the theory of neutrino oscillations which have been under discussion recently. We show that the S-matrix formalism of quantum field theory can adequately describe neutrino oscillations if correct physics conditions are imposed. This includes space-time localization of the neutrino production and detection processes. Space-time diagrams are introduced, which characterize this localization and illustrate the coherence issues of neutrino oscillations. We discuss two approaches to calculations of the transition amplitudes, which allow different physics interpretations: (i) (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14.  9
    Modular Localization and the Foundational Origin of Integrability.Bert Schroer - 2013 - Foundations of Physics 43 (3):329-372.
    The main aim of this work is to relate integrability in QFT with a complete particle interpretation directly to the principle of causal localization, circumventing the standard method of finding sufficiently many conservation laws. Its precise conceptual-mathematical formulation as “modular localization” within the setting of local operator algebras also suggests novel ways of looking at general (non-integrable) QFTs which are not based on quantizing classical field theories.Conformal QFT, which is known to admit no particle interpretation, suggest the presence of a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Quantum Field Theory.Meinard Kuhlmann - 2012 - The Stanford Encyclopedia of Philosophy.
    Quantum Field Theory (QFT) is the mathematical and conceptual framework for contemporary elementary particle physics. In a rather informal sense QFT is the extension of quantum mechanics (QM), dealing with particles, over to fields, i.e. systems with an infinite number of degrees of freedom. (See the entry on quantum mechanics.) In the last few years QFT has become a more widely discussed topic in philosophy of science, with questions ranging from methodology and semantics to ontology. QFT taken seriously in its (...)
    Direct download  
     
    Export citation  
     
    Bookmark   30 citations  
  16. The Coalescence Approach to Inequivalent Representation: Pre-QM ∞ Parallels.Caspar Jacobs - 2023 - British Journal for the Philosophy of Science 74 (4):1069-1090.
    Ruetsche ([2011]) argues that the occurrence of unitarily inequivalent representations in quantum theories with infinitely many degrees of freedom poses a novel interpretational problem. According to Ruetsche, such theories compel us to reject the so-called ideal of pristine interpretation; she puts forward the ‘coalescence approach’ as an alternative. In this paper I offer a novel defence of the coalescence approach. The defence rests on the claim that the ideal of pristine interpretation already fails before one considers the peculiarities of QM∞: (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  19
    How is Quantum Field Theory Possible?Sunny Y. Auyang - 1995 - New York: Oxford University Press.
    Quantum field theory (QFT) combines quantum mechanics with Einstein's special theory of relativity and underlies elementary particle physics. This book presents a philosophical analysis of QFT. It is the first treatise in which the philosophies of space-time, quantum phenomena, and particle interactions are encompassed in a unified framework. Describing the physics in nontechnical terms, and schematically illustrating complex ideas, the book also serves as an introduction to fundamental physical theories. The philosophical interpretation both upholds the reality of the quantum world (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  18.  17
    Quantum field theory: Underdetermination, inconsistency, and idealization.Doreen Fraser - 2009 - Philosophy of Science 76 (4):536-567.
    Quantum field theory (QFT) presents a genuine example of the underdetermination of theory by empirical evidence. There are variants of QFT—for example, the standard textbook formulation and the rigorous axiomatic formulation—that are empirically indistinguishable yet support different interpretations. This case is of particular interest to philosophers of physics because, before the philosophical work of interpreting QFT can proceed, the question of which variant should be subject to interpretation must be settled. New arguments are offered for basing the interpretation of QFT (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  19. Naturalness, the autonomy of scales, and the 125GeV Higgs.Porter Williams - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51:82-96.
    The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  20. How to Be a Relativistic Spacetime State Realist.Noel Swanson - 2020 - British Journal for the Philosophy of Science 71 (3):933-957.
    According to spacetime state realism, the fundamental ontology of a quantum mechanical world consists of a state-valued field evolving in four-dimensional spacetime. One chief advantage it claims over rival wave-function realist views is its natural compatibility with relativistic quantum field theory. I argue that the original density operator formulation of SSR cannot be extended to QFTs where the local observables form type III von Neumann algebras. Instead, I propose a new formulation of SSR in terms of a presheaf of local (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  21.  38
    Almost‐anywhere theories: Reductionism and universality of emergence.Ignazio Licata - 2010 - Complexity 15 (6):11-19.
  22.  48
    Betting on Future Physics.Mike D. Schneider - 2022 - British Journal for the Philosophy of Science 73 (1):161-183.
    The ‘cosmological constant problem’ has historically been understood as describing a conflict between cosmological observations in the framework of general relativity and theoretical predictions from quantum field theory, which a future theory of quantum gravity ought to resolve. I argue that this view of the CCP is best understood in terms of a bet about future physics made on the basis of particular interpretational choices in GR and QFT, respectively. Crucially, each of these choices must be taken as itself grounded (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  63
    Effective theories and infinite idealizations: a challenge for scientific realism.Sébastien Rivat - 2020 - Synthese 198 (12):12107-12136.
    Williams and J. Fraser have recently argued that effective field theory methods enable scientific realists to make more reliable ontological commitments in quantum field theory than those commonly made. In this paper, I show that the interpretative relevance of these methods extends beyond the specific context of QFT by identifying common structural features shared by effective theories across physics. In particular, I argue that effective theories are best characterized by the fact that they contain intrinsic empirical limitations, and I extract (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24. In Defence of Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory.David Wallace - 2006 - Synthese 151 (1):33-80.
    I analyse the conceptual and mathematical foundations of Lagrangian quantum field theory (QFT) (that is, the ‘naive’ (QFT) used in mainstream physics, as opposed to algebraic quantum field theory). The objective is to see whether Lagrangian (QFT) has a sufficiently firm conceptual and mathematical basis to be a legitimate object of foundational study, or whether it is too ill-defined. The analysis covers renormalisation and infinities, inequivalent representations, and the concept of localised states; the conclusion is that Lagrangian QFT (at least (...)
    No categories
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   75 citations  
  25. Not Particles, Not Quite Fields: An Ontology for Quantum Field Theory.Tracy Lupher - 2018 - Humana Mente 4 (13):155-173.
    There are significant problems involved in determining the ontology of quantum field theory. An ontology involving particles seems to be ruled out due to the problem of defining localized position operators, issues involving interactions in QFT, and, perhaps, the appearance of unitarily inequivalent representations. While this might imply that fields are the most natural ontology for QFT, the wavefunctional interpretation of QFT has significant drawbacks. A modified field ontology is examined where determinables are assigned to open bounded regions of spacetime (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  45
    A Persistent Particle Ontology for Quantum Field Theory in Terms of the Dirac Sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - 2019 - British Journal for the Philosophy of Science 70 (3):747-770.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to quantum field theory. By means of the Dirac sea model—exemplified in the electron sector of the standard model neglecting radiation—we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level of wave (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  27.  15
    Ontological Aspects of Quantum Field Theory.Meinard Kuhlmann, Holger Lyre & Andrew Wayne (eds.) - 2002 - Singapore: World Scientific.
    Quantum field theory provides the framework for many fundamental theories in modern physics, and over the last few years there has been growing interest in its historical and philosophical foundations. This anthology on the foundations of QFT brings together 15 essays by well-known researchers in physics, the philosophy of physics, and analytic philosophy.Many of these essays were first presented as papers at the conference?Ontological Aspects of Quantum Field Theory?, held at the Zentrum fr interdisziplin„re Forschung, Bielefeld, Germany. The essays contain (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  28.  5
    Quantum Mechanics: Myths and Facts.Nikolic Hrvoje - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Quanta transfer in space is conserved.Henk Grimm - 2017
    The paper is replaced by a new version (12-2019): DOI: 10.5281/zenodo.3572846 -/- Physical phenomena emerge from the quantum fields everywhere in space. However, not only the phenomena emerge from the quantum fields, the law of the conservation of energy must have its origin from the same spatial structure. This paper describes the relations between the main law of physics and the mathematical structure of the “aggregated” quantum fields.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  83
    Particles in Quantum Field Theory.Doreen Fraser - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. 323-336.
    The consensus view among philosophers of physics is that relativistic quantum field theory does not describe particles. That is, according to QFT, particles are not fundamental entities. How is this negative conclusion compatible with the positive role that the particle notion plays in particle physics? The first part of this chapter lays out multiple lines of negative argument that all conclude that QFT cannot be given a particle interpretation. These arguments probe the properties of the `particles' in standard formulations of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31.  34
    Higgs Naturalness and Renormalized Parameters.Robert Harlander & Joshua Rosaler - 2019 - Foundations of Physics 49 (9):879-897.
    A recently popular formulation of the Higgs naturalness principle prohibits delicate cancellations between running renormalized Higgs mass parameters and EFT matching corrections, by contrast with the principle’s original formulation, which prohibits delicate cancellations between the bare Higgs mass parameter and its quantum corrections. While the need for this latter cancellation is sometimes viewed as unproblematic since bare parameters are thought by some to be divergent and unphysical, renormalized parameters are finite and measurable, and the need for delicate cancellations between the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  32.  52
    Coarse-Graining as a Route to Microscopic Physics: The Renormalization Group in Quantum Field Theory.Li Bihui - 2015 - Philosophy of Science 82 (5):1211-1223.
    The renormalization group has been characterized as merely a coarse-graining procedure that does not illuminate the microscopic content of quantum field theory, but merely gets us from that content, as given by axiomatic QFT, to macroscopic predictions. I argue that in the constructive field theory tradition, RG techniques do illuminate the microscopic dynamics of a QFT, which are not automatically given by axiomatic QFT. RG techniques in constructive field theory are also rigorous, so one cannot object to their foundational import (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33. A philosopher's guide to the foundations of quantum field theory.Noel Swanson - 2017 - Philosophy Compass 12 (5):e12414.
    A major obstacle facing interpreters of quantum field theory is a proliferation of different theoretical frameworks. This article surveys three of the main available options—Lagrangian, Wightman, and algebraic QFT—and examines how they are related. Although each framework emphasizes different aspects of QFT, leading to distinct strengths and weaknesses, there is less tension between them than commonly assumed. Given the limitations of our current knowledge and the need for creative new ideas, I urge philosophers to explore puzzles, tools, and techniques from (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  34.  24
    Philosophical foundations of quantum field theory.N. Huggett - 2000 - British Journal for the Philosophy of Science 51 (4):617-637.
    Much attention has been directed to the philosophical implications of quantum field theory (QFT) in recent years; this paper attempts a survey in low-technical terms. First the relations of QFT to other kinds of theory, classical and quantum, particle and field, are discussed. Then various formulations of QFT are introduced, along with related interpretations. Finally a review is made of some of the most interesting foundational problems.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  35.  47
    Reconciling axiomatic quantum field theory with cutoff-dependent particle physics.Adam Koberinski - manuscript
    The debate between Fraser and Wallace over the foundations of quantum field theory has spawned increased focus on both the axiomatic and conventional formalisms. The debate has set the tone for future foundational analysis, and has forced philosophers to “pick a side”. The two are seen as competing research programs, and the major divide between the two manifests in how each handles renormalization. In this paper I argue that the terms set by the Fraser-Wallace debate are misleading. AQFT and CQFT (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  15
    An Approach to Building Quantum Field Theory Based on Non-Diophantine Arithmetics.Mark Burgin & Felix Lev - 2024 - Foundations of Science 29 (2):325-350.
    The problem of infinities in quantum field theory (QFT) is a longstanding problem in particle physics. To solve this problem, different renormalization techniques have been suggested but the problem persists. Here we suggest another approach to the elimination of infinities in QFT, which is based on non-Diophantine arithmetics – a novel mathematical area that already found useful applications in physics, psychology, and other areas. To achieve this goal, new non-Diophantine arithmetics are constructed and their properties are studied. In addition, non-Diophantine (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  22
    The Present Situation in Quantum Theory and its Merging with General Relativity.Andrei Khrennikov - 2017 - Foundations of Physics 47 (8):1077-1099.
    We discuss the problems of quantum theory complicating its merging with general relativity. QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics and quantum field theory are the most widely known. The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  23
    Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  39.  47
    The Invisibility of Diffeomorphisms.Sebastian De Haro - 2017 - Foundations of Physics 47 (11):1464-1497.
    I examine the relationship between \\)-dimensional Poincaré metrics and d-dimensional conformal manifolds, from both mathematical and physical perspectives. The results have a bearing on several conceptual issues relating to asymptotic symmetries in general relativity and in gauge–gravity duality, as follows: I draw from the remarkable work by Fefferman and Graham on conformal geometry, in order to prove two propositions and a theorem that characterise which classes of diffeomorphisms qualify as gravity-invisible. I define natural notions of gravity-invisibility that apply to the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  22
    Solutions in Constructive Field Theory.Leif Hancox-Li - 2017 - Philosophy of Science 84 (2):335-358.
    Constructive field theory aims to rigorously construct concrete, nontrivial solutions to Lagrangians used in particle physics. I examine the relationship of solutions in constructive field theory to both axiomatic and Lagrangian quantum field theory. I argue that Lagrangian QFT provides conditions for what counts as a successful constructive solution and other information that guides constructive field theorists to solutions. Solutions matter because they describe the behavior of QFT systems and thus what QFT says the world is like. Constructive field theory (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  15
    The causal axioms of algebraic quantum field theory: A diagnostic.Francisco Calderón - 2024 - Studies in History and Philosophy of Science Part A 104 (C):98-108.
    Algebraic quantum field theory (AQFT) puts forward three ``causal axioms'' that aim to characterize the theory as one that implements relativistic causation: the spectrum condition, microcausality, and primitive causality. In this paper, I aim to show, in a minimally technical way, that none of them fully explains the notion of causation appropriate for AQFT because they only capture some of the desiderata for relativistic causation I state or because it is often unclear how each axiom implements its respective desideratum. After (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  11
    Real Virtuality and Actual Transitions: Historical Reflections on Virtual Entities before Quantum Field Theory.Alexander S. Blum & Martin Jähnert - 2024 - Perspectives on Science 32 (3):329-349.
    This paper studies the notion of virtuality in the Bohr-Kramers-Slater theory of 1924. We situate the virtual entities of BKS within the tradition of the correspondence principle and the radiation theory of the Bohr model. We show how, in this context, virtual oscillators emerged as classical substitute radiators and were used to describe the otherwise elusive quantum transitions. They played an effective role in the quantum theory of radiation while remaining categorically distinct and ontologically separated from the quantum world of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43.  20
    How to take particle physics seriously: A further defence of axiomatic quantum field theory.Doreen Fraser - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):126-135.
    Further arguments are offered in defence of the position that the variant of quantum field theory (QFT) that should be subject to interpretation and foundational analysis is axiomatic quantum field theory. I argue that the successful application of renormalization group (RG) methods within alternative formulations of QFT illuminates the empirical content of QFT, but not the theoretical content. RG methods corroborate the point of view that QFT is a case of the underdetermination of theory by empirical evidence. I also urge (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  44. The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, and not (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  45.  59
    Renormalization scrutinized.Sébastien Rivat - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:23-39.
    In this paper, I propose a general framework for understanding renormalization by drawing on the distinction between effective and continuum Quantum Field Theories (QFTs), and offer a comprehensive account of perturbative renormalization on this basis. My central claim is that the effective approach to renormalization provides a more physically perspicuous, conceptually coherent and widely applicable framework to construct perturbative QFTs than the continuum approach. I also show how a careful comparison between the two approaches: (i) helps to dispel the mystery (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  46. The Real Problem with Perturbative Quantum Field Theory.James D. Fraser - 2020 - British Journal for the Philosophy of Science 71 (2):391-413.
    The perturbative approach to quantum field theory has long been viewed with suspicion by philosophers of science. This article offers a diagnosis of its conceptual problems. Drawing on Norton’s discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  47.  2
    Renormalization and the Effective Field Theory Programme.Don Robinson - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:393 - 403.
    Since 1980 effective field theories (EFT's) have been the focus of much research by quantum field theorists but their philosophical implications have gone mostly unnoticed. Some authors claim EFT's are approximations to some fundamental theory. Others claim EFT's are ends in themselves, not approximations to some fundamental theory, and that we can use them to bypass the problem of renormalization. In the present work I argue that the EFT programme can bypass the problem if ontological commitments only come from theoretical (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  48.  7
    Philosophical Aspects of Quantum Field Theory: II.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):571-584.
    According to a regnant criterion of physical equivalence for quantum theories, a quantum field theory (QFT) typically admits continuously many physically inequivalent realizations. This, the second of a two-part introduction to topics in the philosophy of QFT, continues the investigation of this alarming circumstance. It begins with a brief catalog of quantum field theoretic examples of this non-uniqueness, then presents the basics of the algebraic approach to quantum theories, which discloses a structure common even to ‘physically inequivalent’ realizations of a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Gravitational decoherence: A thematic overview.C. Anastopoulos & B. L. Hu - 2022 - AVS Quantum Science 4:015602.
    Gravitational decoherence (GD) refers to the effects of gravity in actuating the classical appearance of a quantum system. Because the underlying processes involve issues in general relativity (GR), quantum field theory (QFT), and quantum information, GD has fundamental theoretical significance. There is a great variety of GD models, many of them involving physics that diverge from GR and/or QFT. This overview has two specific goals along with one central theme:(i) present theories of GD based on GR and QFT and explore (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 104