4 found
Order:
See also
Daniel Waxman
Lingnan University
  1.  49
    Is Mathematics Unreasonably Effective?Daniel Waxman - forthcoming - Australasian Journal of Philosophy:1-17.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural s...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2. A Metasemantic Challenge for Mathematical Determinacy.Jared Warren & Daniel Waxman - 2020 - Synthese 197 (2):477-495.
    This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics. From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate, motivate two important constraints on attempts to meet our challenge, and then use these constraints to develop an argument against determinacy and discuss a particularly popular approach (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  40
    Deflationism, Arithmetic, and the Argument From Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  79
    Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark