6 found
Order:
See also
Daniel Waxman
National University of Singapore
  1. Losing Confidence in Luminosity.Simon Goldstein & Daniel Waxman - 2020 - Noûs:1-30.
    A mental state is luminous if, whenever an agent is in that state, they are in a position to know that they are. Following Timothy Williamson’s Knowledge and Its Limits, a wave of recent work has explored whether there are any non-trivial luminous mental states. A version of Williamson’s anti-luminosity appeals to a safety- theoretic principle connecting knowledge and confidence: if an agent knows p, then p is true in any nearby scenario where she has a similar level of confidence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. A Metasemantic Challenge for Mathematical Determinacy.Jared Warren & Daniel Waxman - 2020 - Synthese 197 (2):477-495.
    This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics. From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate, motivate two important constraints on attempts to meet our challenge, and then use these constraints to develop an argument against determinacy and discuss a particularly popular approach (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  92
    Is Mathematics Unreasonably Effective?Daniel Waxman - 2021 - Australasian Journal of Philosophy 99 (1):83-99.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural science is mysterious. This paper sharpens and responds to a challenge to this effect. I argue that the aesthetic considerations used to evaluate and motivate mathematics are much more closely connected with the physical world than one might presume, and (with reference to case-studies within Galois theory and probabilistic number theory) show that they are correlated with (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  45
    Deflationism, Arithmetic, and the Argument From Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  15
    Stable and Unstable Theories of Truth and Syntax.Beau Madison Mount & Daniel Waxman - 2021 - Mind 130 (518):439-473.
    Recent work on formal theories of truth has revived an approach, due originally to Tarski, on which syntax and truth theories are sharply distinguished—‘disentangled’—from mathematical base theories. In this paper, we defend a novel philosophical constraint on disentangled theories. We argue that these theories must be epistemically stable: they must possess an intrinsic motivation justifying no strictly stronger theory. In a disentangled setting, even if the base and the syntax theory are individually stable, they may be jointly unstable. We contend (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark