Results for 'DNA repeats'

999 found
Order:
  1.  21
    Precarious maintenance of simple DNA repeats in eukaryotes.Alexander J. Neil, Jane C. Kim & Sergei M. Mirkin - 2017 - Bioessays 39 (9):1700077.
    In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  16
    The role of DNA repeats and associated secondary structures in genomic instability and neoplasia.Simon Bouffler, Andrew Silver & Roger Cox - 1993 - Bioessays 15 (6):409-412.
    Tumour‐associated genetic changes frequently involve DNA translocation or deletion. Many of these events will have arisen from initial genomic damage, induced by either the activity of endogenous metabolic processes or from exposure to environmental genotoxic agents. Although initial genomic damage will have been widely distributed, tumorigenic events are confined to certain DNA target sites. Furthermore, within these target sites there appear to be regions of preferential DNA rearrangement, and examination of these sites implies that the location and extent of such (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  19
    Structural Biology of the HEAT‐Like Repeat Family of DNA Glycosylases.Rongxin Shi, Xing-Xing Shen, Antonis Rokas & Brandt F. Eichman - 2018 - Bioessays 40 (11):1800133.
    DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl‐DNA glycosylases AlkC and AlkD adopt a unique structure based on α‐helical HEAT repeats. Both enzymes identify and excise their substrates without a base‐flipping mechanism used by other glycosylases and nucleic acid processing proteins to access nucleobases that are otherwise stacked inside the double‐helix. Consequently, these glycosylases act on a variety of cationic nucleobase modifications, including bulky adducts, not previously associated (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  28
    Inhibition of DNA synthesis facilitates expansion of low‐complexity repeats.Andrei Kuzminov - 2013 - Bioessays 35 (4):306-313.
  5. Heterochromatin repeat organization at an individual level: Rex1BD and the 14‐3‐3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats[REVIEW]Jinxin Gao & Fei Li - forthcoming - Bioessays:2400030.
    In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position‐dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position‐dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  12
    Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex.Vincent Géli & Michael Lisby - 2015 - Bioessays 37 (12):1287-1292.
    The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of “difficult to repair” lesions such as double‐strand breaks without a repair template and eroded telomeres in telomerase‐deficient cells. In addition to such pathological situations, a recent study by Su and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure‐forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  13
    DNA damage tolerance, mismatch repair and genome instability.P. Karran & M. Bignami - 1994 - Bioessays 16 (11):833-839.
    DNA mismatch repair is an important pathway of mutation avoidance. It also contributes to the cytotoxic effects of some kinds of DNA damage, and cells defective in mismatch repair are resistant, or tolerant, to the presence of some normally cytotoxic base analogues in their DNA. The absence of a particular mismatch binding function from some mammalian cells confers resistance to the base analogues O6‐methylguanine and 6‐thioguanine in DNA. Cells also acquire a spontaneous mutator phenotype as a consequence of this defect. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  25
    Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair.David R. F. Leach - 1994 - Bioessays 16 (12):893-900.
    Long DNA palindromes pose a threat to genome stability. This instability is primarily mediated by slippage on the lagging strand of the replication fork between short directly repeated sequences close to the ends of the palindrome. The role of the palindrome is likely to be the juxtaposition of the directly repeated sequences by intrastrand base‐pairing. This intra‐strand base‐pairing, if present on both strands, results in a cruciform structure. In bacteria, cruciform structures have proved difficult to detect in vivo, suggesting that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  4
    DNA transposition – a major contributor to plant chromosome structure.R. B. Flavell - 1984 - Bioessays 1 (1):21-22.
    Higher plant nuclear genomes contain many families of dispersed repeats that change during evolution. Recent evidence from studies on genetically defined transposable elements raises the possibility that many of the dispersed repeats are remnants of such elements. Transposition of DNA has also occurred between mitochondria, chloroplasts and nuclei, a fact that underlines the major role played by DNA transposition in determining the structure of plant genomes.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  10
    What the papers say: Telomeric DNA binding proteins.Jing-Jer Lin - 1993 - Bioessays 15 (8):555-557.
    The physical ends of eukaryotic chromosomes form a specialized nucleoprotein complex composed of DNA and DNA binding proteins. This nucleoprotein complex, termed the telomere, is essential for chromosome stability. In most organisms, the DNA portion of the nucleoprotein complex consists of simple tandem DNA repeats with one strand guanine rich. The protein portion of the complex is less well understood. The experiments presented in two recent papers(1,2) represent different stages in the characterization of the telomeric DNA binding proteins. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  26
    Inclusiveness, Effectiveness and Intrusiveness: Issues in the Developing Uses of DNA Profiling in Support of Criminal Investigations.Robin Williams & Paul Johnson - 2006 - Journal of Law, Medicine and Ethics 34 (2):234-247.
    Current methods of forensic DNA profiling, based on Polymerase Chain Reaction amplifications of a varying number of Short Tandem Repeat loci found at different locations on the human genome, are regularly described as constituting the “gold standard for identification” in contemporary society. At a time when criminal justice systems in Europe and North America increasingly seek to utilize the epistemic authority of a variety of sciences in support of the apprehension and prosecution of suspects and offenders, genetic science and recombinant (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  12.  15
    Genomic imprinting in unstable DNA diseases.Arturas Petronis - 1996 - Bioessays 18 (7):587-590.
    Evidence for recombination suppression has been identified in linkage studies of several unstable DNA diseases. Also sex‐specific changes in recombination frequency have been detected at the loci of Huntington's disease and myotonic dystrophy. It can be hypothesized that meiotic recombination is regulated by genome‐wide genomic imprinting and that changes in meiotic recombination imply the presence of the genomic imprinting defect. If aberrant recombination at the locus of trinucleotide repeat expansion is verified, new theoretical and experimental opportunities will arise in studies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  21
    Control of eukaryotic DNA replication at the chromosomal level.Friedrich Wanka - 1991 - Bioessays 13 (11):613-618.
    A hypothesis for the control of eukaryotic DNA replication at the chromosomal level is proposed. The specific regulatory problem arises from the subdivision of the genome into thousands of individually replicating units, each of which must be duplicated a single time during S‐phase. The hypothesis is based on the finding of direct repeats at replication origins. Such repeats can adopt, beyond the full‐length double helical structure, another configuration exposing two single‐stranded loops that provide suitable templates for the initiation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  6
    Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife.David Haig - 2021 - Bioessays 43 (12):2100179.
    Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non‐coding regions of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  4
    Centromere diversity: How different repeat‐based holocentromeres may have evolved.Yi-Tzu Kuo, Veit Schubert, André Marques, Ingo Schubert & Andreas Houben - 2024 - Bioessays 46 (6):2400013.
    In addition to monocentric eukaryotes, which have a single localized centromere on each chromosome, there are holocentric species, with extended repeat‐based or repeat‐less centromeres distributed over the entire chromosome length. At least two types of repeat‐based holocentromeres exist, one composed of many small repeat‐based centromere units (small unit‐type), and another one characterized by a few large centromere units (large unit‐type). We hypothesize that the transposable element‐mediated dispersal of hundreds of short satellite arrays formed the small centromere unit‐type holocentromere in Rhynchospora (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  12
    CAC – the neglected repeat.Amalia Sertedaki & Susan Lindsay - 1996 - Bioessays 18 (3):237-242.
    It is becoming increasingly clear that repetitive DNA is of biological significance as well as experimental importance. Here we review the information available about one type of repetitive DNA, the trinucleotide repeat (CAC)n, and briefly compare it with other trinucleotide repeats. Although much work has been done in analysing DNA fingerprinting patterns produced using the synthetic oligonucleotide (CAC)5 as a probe, there is relatively little information about individual (CAC)n‐containing sequences and their abundance, organisation and distribution in mammalian DNA. From (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  26
    A cellular survival switch: poly(ADP‐ribosyl)ation stimulates DNA repair and silences transcription.Mathias Ziegler & Shiao Li Oei - 2001 - Bioessays 23 (6):543-548.
    Poly(ADP‐ribosyl)ation is a post‐translational modification occurring in the nucleus. The most abundant and best‐characterized enzyme catalyzing this reaction, poly(ADP‐ribose) polymerase 1 (PARP1), participates in fundamental nuclear events. The enzyme functions as molecular “nick sensor”. It binds with high affinity to DNA single‐strand breaks resulting in the initiation of its catalytic activity. Activated PARP1 promotes base excision repair. In addition, PARP1 modifies several transcription factors and thereby precludes their binding to DNA. We propose that a major function of PARP1 includes the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  22
    Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl.Zhuqing Ouyang & Hongtao Yu - 2017 - Bioessays 39 (4):1600207.
    The ring‐shaped ATPase machine, cohesin, regulates sister chromatid cohesion, transcription, and DNA repair by topologically entrapping DNA. Here, we propose a rigid scaffold model to explain how the cohesin regulators Pds5 and Wapl release cohesin from chromosomes. Recent studies have established the Smc3‐Scc1 interface as the DNA exit gate of cohesin, revealed a requirement for ATP hydrolysis in ring opening, suggested regulation of the cohesin ATPase activity by DNA and Smc3 acetylation, and provided insights into how Pds5 and Wapl open (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  5
    The return of copy‐choice in DNA recombination.Roderick S. Tang - 1994 - Bioessays 16 (11):785-788.
    In a recent publication, d'Alençon et al.(1) presented evidence that a form of non‐homologous DNA recombination involving direct repeats is dependent upon the replication of the DNA. In addition, density‐labeling experiments showed that after recombination was stimulated, progenies were present only in molecules that had undergone complete replication. These observations are consistent with a replicative and not a breakage‐and‐rejoining model for the DNA recombination events. These two models had of course been contrasted many years ago in mechanistic studies of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  10
    Regulation of mammalian gene expression by retroelements and non‐coding tandem repeats.Nikolai V. Tomilin - 2008 - Bioessays 30 (4):338-348.
    Genomes of higher eukaryotes contain abundant non‐coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon‐derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene‐rich regions and are found in promoters of genes while LINEs are concentrated in gene‐poor regions and are depleted from promoters. The second class consists of non‐coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  7
    Break-induced replication links microsatellite expansion to complex genome rearrangements.Michael Leffak - 2017 - Bioessays 39 (8):1700025.
    The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co‐workers presented a novel mechanism for microsatellite expansions based on break‐induced replication (BIR) at sites of microsatellite‐induced replication stalling and fork collapse. The BIR model aims to explain single‐step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single‐ended DSBs) and degraded telomeric DNA. However, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  11
    Chromosome ends: different sequences may provide conserved functions.Edward J. Louis & Alexander V. Vershinin - 2005 - Bioessays 27 (7):685-697.
    The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere‐specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6–8 bp Arabidopsis‐like sequence in a majority of organisms as diverse as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  7
    Endless quest.Robin Holliday - 1996 - Bioessays 18 (1):3-5.
    The replication of linear chromosome DNA by DNA polymerase leads to the loss of terminal sequences, in the absence of a special mechanism to maintain ends or telomeres. This mechanism is known to consist of short terminal repeats and the enzyme telomerase, which contains RNA complementary to the DNA repeats. There is evidence that telomeric DNA continually decreases in size in the absence of telomerase, and this is followed by cellular senescence. Immortalisation of somatic cells is accompanied, at (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  1
    Challenging endings: How telomeres prevent fragility.Galina Glousker & Joachim Lingner - 2021 - Bioessays 43 (10):2100157.
    It has become apparent that difficulties to replicate telomeres concern not only the very ends of eukaryotic chromosomes. The challenges already start when the replication fork enters the telomeric repeats. The obstacles encountered consist mainly of noncanonical nucleic acid structures that interfere with replication if not resolved. Replication stress at telomeres promotes the formation of so‐called fragile telomeres displaying an abnormal appearance in metaphase chromosomes though their exact molecular nature remains to be elucidated. A substantial number of factors is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  32
    Chromosome segment duplications in Neurospora crassa: barren crosses beget fertile science.Parmit K. Singh, Srividhya V. Iyer, Mukund Ramakrishnan & Durgadas P. Kasbekar - 2009 - Bioessays 31 (2):209-219.
    Studies on Neurospora chromosome segment duplications (Dps) performed since the publication of Perkins's comprehensive review in 1997 form the focus of this article. We present a brief summary of Perkins's seminal work on chromosome rearrangements, specifically, the identification of insertional and quasiterminal translocations that can segregate Dp progeny when crossed with normal sequence strains (i.e., T × N). We describe the genome defense process called meiotic silencing by unpaired DNA that renders Dp‐heterozygous crosses (i.e., Dp × N) barren, which provides (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  17
    Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity.Sarah K. Deng, Huan Chen & Lorraine S. Symington - 2015 - Bioessays 37 (3):305-313.
    Replication protein A (RPA) is the main eukaryotic single‐stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by microhomology‐mediated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  13
    Protosilencers as building blocks for heterochromatin.Geneviève Fourel, Eléonore Lebrun & Eric Gilson - 2002 - Bioessays 24 (9):828-835.
    DNA repetitions may provoke heterochromatinization. We explore here a model in which multiple cis‐acting sequences that display no silencing activity on their own (protosilencers) may cooperate to establish and maintain a heterochromatin domain efficiently. Protosilencers, first defined in budding yeast, have now been found in a wide range of genomes where they appear to stabilize and to extend the propagation of heterochromatin domains. Strikingly, isolated or moderately repeated protosilencers can also be found in promoters where they participate in transcriptional activation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  3
    The controversial 30 nm chromatin fibre.Dontcho Z. Staynov - 2008 - Bioessays 30 (10):1003-1009.
    DNA is packed as chromatin on several levels in the eukaryotic nucleus. Dissection of chromatin with nucleases produces three stable substructures: the nucleosome core particle, the chromatosome and the 30 nm fibre. Whilst the first two allow transcription, the 30 nm fibre is taken to be the first level of transcriptionally dormant chromatin and it has an important functional role in cell differentiation and epigenetic regulation. Its structure has been a subject of continuing discussion since native fibres cannot readily be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  7
    Short‐range inversions: Rethinking organelle genome stability.Samuel Tremblay-Belzile, Étienne Lepage, Éric Zampini & Normand Brisson - 2015 - Bioessays 37 (10):1086-1094.
    In the organelles of plants and mammals, recent evidence suggests that genomic instability stems in large part from template switching events taking place during DNA replication. Although more than one mechanism may be responsible for this, some similarities exist between the different proposed models. These can be separated into two main categories, depending on whether they involve a single‐strand‐switching or a reciprocal‐strand‐switching event. Single‐strand‐switching events lead to intermediates containing Y junctions, whereas reciprocal‐strand‐switching creates Holliday junctions. Common features in all the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  44
    Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica.Sreenivas Chavali, David A. De Lima Morais, Julian Gough & M. Madan Babu - 2011 - Bioessays 33 (8):592-601.
    Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron‐exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  19
    Jumping the fine LINE between species: Horizontal transfer of transposable elements in animals catalyses genome evolution.Atma M. Ivancevic, Ali M. Walsh, R. Daniel Kortschak & David L. Adelson - 2013 - Bioessays 35 (12):1071-1082.
    Horizontal transfer (HT) is the transmission of genetic material between non‐mating species, a phenomenon thought to occur rarely in multicellular eukaryotes. However, many transposable elements (TEs) are not only capable of HT, but have frequently jumped between widely divergent species. Here we review and integrate reported cases of HT in retrotransposons of the BovB family, and DNA transposons, over a broad range of animals spanning all continents. Our conclusions challenge the paradigm that HT in vertebrates is restricted to infective long (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  34
    Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development.Mikhail Skoblov, Andrey Marakhonov, Ekaterina Marakasova, Anna Guskova, Vikas Chandhoke, Aybike Birerdinc & Ancha Baranova - 2013 - Bioessays 35 (7):586-596.
    The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of protein‐protein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT‐mTOR‐p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch‐TOG‐dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental regulator KCTD15 (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  15
    Drosophila telomeres: an exception providing new insights.James M. Mason, Radmila Capkova Frydrychova & Harald Biessmann - 2008 - Bioessays 30 (1):25-37.
    Drosophila telomeres comprise DNA sequences that differ dramatically from those of other eukaryotes. Telomere functions, however, are similar to those found in telomerase‐based telomeres, even though the underlying mechanisms may differ. Drosophila telomeres use arrays of retrotransposons to maintain chromosome length, while nearly all other eukaryotes rely on telomerase‐generated short repeats. Regardless of the DNA sequence, several end‐binding proteins are evolutionarily conserved. Away from the end, the Drosophila telomeric and subtelomeric DNA sequences are complexed with unique combinations of proteins (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Replicators and Vehicles.Richard Dawkins - unknown
    he theory o f natural selection provides a mechanistic, causal account of how living things came to look as if they had been designed for a purpose. So overwhelming is the appearance of purposeful design that, even in this Darwinian era when we know "better," we still find it difficult, indeed boringly pedantic, to refrain from teleological language when discussing adaptation. Birds' wings are obviously "for" flying, spider webs are for catching insects, chlorophyll molecules are for photosynthesis, DNA molecules are (...)
    Direct download  
     
    Export citation  
     
    Bookmark   80 citations  
  35.  25
    The genome editing revolution: A CRISPR‐Cas TALE off‐target story.Stefano Stella & Guillermo Montoya - 2016 - Bioessays 38 (S1):4-13.
    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator‐like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)‐associated protein (Cas) system (clustered regularly interspaced short (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  18
    The Making of an Entrepreneurial Science: Biotechnology in Britain, 1975–1995.Soraya de Chadarevian - 2011 - Isis 102 (4):601-633.
    ABSTRACT Monoclonal antibodies played a key role in the development of the biotechnology industry of the 1980s and 1990s. Investments in the sector and commercial returns have rivaled those of recombinant DNA technologies. Although the monoclonal antibody technology was first developed in Britain, the first patents were taken out by American scientists. During the first Thatcher government in Britain, blame for the missed opportunity fell on the scientists involved as well as on the National Research and Development Corporation, which had (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  37.  64
    Mutant Bacteriophages, Frank Macfarlane Burnet, and the Changing Nature of "Genespeak" in the 1930s.Neeraja Sankaran - 2010 - Journal of the History of Biology 43 (3):571 - 599.
    In 1936, Frank Macfarlane Burnet published a paper entitled "Induced lysogenicity and the mutation of bacteriophage within lysogenic bacteria," in which he demonstrated that the introduction of a specific bacteriophage into a bacterial strain consistently and repeatedly imparted a specific property – namely the resistance to a different phage – to the bacterial strain that was originally susceptible to lysis by that second phage. Burnet's explanation for this change was that the first phage was causing a mutation in the bacterium (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  27
    Retrotransposon‐derived p53 binding sites enhance telomere maintenance and genome protection.Paul M. Lieberman - 2016 - Bioessays 38 (10):943-949.
    Tumor suppressor protein 53 (p53) plays a central role in the control of genome stability, acting primarily through the transcriptional activation of stress‐response genes. However, many p53 binding sites are located at genomic locations with no obvious regulatory‐link to known stress‐response genes. We recently discovered p53 binding sites within retrotransposon‐derived elements in human and mouse subtelomeres. These retrotransposon‐derived p53 binding sites protected chromosome ends through transcription activation of telomere repeat RNA, as well as through the direct modification of local chromatin (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  14
    Host under epigenetic control: A novel perspective on the interaction between microorganisms and corals.Adam R. Barno, Helena D. M. Villela, Manuel Aranda, Torsten Thomas & Raquel S. Peixoto - 2021 - Bioessays 43 (10):2100068.
    Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral‐associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin‐repeat protein A and internalin B, which indirectly cause histone modifications in humans, as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  11
    CRISPR/Cas technology as a promising weapon to combat viral infections.Carmen Escalona-Noguero, María López-Valls & Begoña Sot - 2021 - Bioessays 43 (4):2000315.
    The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA‐ and RNA‐targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  48
    The CRISPR Revolution in Genome Engineering: Perspectives from Religious Ethics.Jung Lee - 2022 - Journal of Religious Ethics 50 (3):333-360.
    This focus issue considers the normative implications of the recent emergence in genome editing technology known as CRISPR (clustered regularly interspaced short palindromic repeats) or CRISPR‐associated protein 9. Originally discovered in the adaptive immune systems of bacteria and archaea, CRISPR enables researchers to make efficient and site‐specific modifications to the genomes of cells and organisms. More accessible, precise, and economic than previous gene editing technologies, CRISPR holds the promise of not only transforming the fields of genetics, agriculture, and human (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  31
    Multiple but dissectible functions of FEN‐1 nucleases in nucleic acid processing, genome stability and diseases.Binghui Shen, Purnima Singh, Ren Liu, Junzhuan Qiu, Li Zheng, L. David Finger & Steve Alas - 2005 - Bioessays 27 (7):717-729.
    Flap EndoNuclease‐1 (FEN‐1) is a multifunctional and structure‐specific nuclease involved in nucleic acid processing pathways. It plays a critical role in maintaining human genome stability through RNA primer removal, long‐patch base excision repair and resolution of dinucleotide and trinucleotide repeat secondary structures. In addition to its flap endonuclease (FEN) and nick exonuclease (EXO) activities, a new gap endonuclease (GEN) activity has been characterized. This activity may be important in apoptotic DNA fragmentation and in resolving stalled DNA replication forks. The multiple (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  15
    Influence of chromatin molecular changes on RNA synthesis during embryonic development.Julian Chela-Flores - 1992 - Acta Biotheoretica 40 (1):41-49.
    Two aspects of the chromatin repeat length (r t) are discussed: (i) Why is r t, longer for slowly dividing cells than in rapidly dividing cells?, and (ii) Why is the temporal evolution of r ta decreasing function of time (t) in mammalian cortical neurons, whereas it is an increasing function of t for granule cells around the time of birth? These questions are discussed in terms of a hypothesis which assumes a correlation between deoxyribonucleic acid (DNA) packaging, transcription, and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  9
    Why Do You Go On Living?Seth M. Walker - 2017-06-23 - In Jeffrey Ewing & Kevin S. Decker (eds.), Alien and Philosophy. Wiley. pp. 198–206.
    Fast‐forward two hundred years to the opening sequence of Alien: Resurrection where United Systems Military (USM) science officers aboard the Auriga are toying with her DNA—salvaged from frozen blood samples on Fiorina 161—to try to create a cloned version of the alien queen that was growing inside her at the time of her death. The absurd is what links the two— Ripley's desire to make some sense out of her troubling existence and the fact that the world is unable to (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  19
    Mutant Bacteriophages, Frank Macfarlane Burnet, and the Changing Nature of “Genespeak” in the 1930s.Neeraja Sankaran - 2010 - Journal of the History of Biology 43 (3):571-599.
    In 1936, Frank Macfarlane Burnet published a paper entitled “Induced lysogenicity and the mutation of bacteriophage within lysogenic bacteria,” in which he demonstrated that the introduction of a specific bacteriophage into a bacterial strain consistently and repeatedly imparted a specific property – namely the resistance to a different phage – to the bacterial strain that was originally susceptible to lysis by that second phage. Burnet’s explanation for this change was that the first phage was causing a mutation in the bacterium (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  62
    The Genomic Challenge to Adaptationism.Sahotra Sarkar - 2015 - British Journal for the Philosophy of Science 66 (3):505-536.
    Since the late 1990s, the characterization of complete DNA sequences for a large and taxonomically diverse set of species has continued to gain in speed and accuracy. Sequence analyses have indicated a strikingly baroque structure for most eukaryotic genomes, with multiple repeats of DNA sequences and with very little of the DNA specifying proteins. Much of the DNA in these genomes has no known function. These results have generated strong interest in the factors that govern the evolution of genome (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  7
    Hypothesis: An apparent dimerization motif in the third domain of alphafetoprotein: Molecular mimicry of the steroid/thyroid nuclear receptor superfamily.G. J. Mizejewski - 1993 - Bioessays 15 (6):427-432.
    Alpha‐fetoprotein (AFP)AFP, alpha‐fetoprotein; T3R, thyroid hormone (triiodothyronine) receptor; RAR, retionic acid receptor; erbA, putative thyroid hormone receptor proto‐oncogene products; VDR, vitamin D receptor; MR, mineralocorticoid receptor; GR, glucocorticoid receptor; PR, progesterone receptor; AR, androgen receptor; HRE, hormone response element on DNA; RXR, retionic‐X‐receptor; RAP, receptor auxiliary (accessory) proteins; E, estrogen. is a tumor‐associated fetal marker, associated both with tumor growth and with birth defects. AFP, whose precise function is unknown, has been classified as belonging to a protein superfamily together with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  13
    Good things in small packages: The tiny genomes of chlorarachniophyte endosymbionts.Paul R. Gilson & Geoffrey I. McFadden - 1997 - Bioessays 19 (2):167-173.
    Chlorarachniophytes are amoeboflagellate, marine protists that have acquired photosynthetic capacity by engulfing and retaining a green alga. These green algal endosymbionts are severely reduced, retaining only the chloroplast, nucleus, cytoplasm and plasma membrane. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes and has a haploid genome size of just 380 kb ‐ the smallest eukaryotic genome known. Initial characterisation of nucleomorph DNA has revealed that all chromosomes are capped with inverted repeats comprising (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  26
    Chromatin remodeling by ATP‐dependent molecular machines.Alexandra Lusser & James T. Kadonaga - 2003 - Bioessays 25 (12):1192-1200.
    The eukaryotic genome is packaged into a periodic nucleoprotein structure termed chromatin. The repeating unit of chromatin, the nucleosome, consists of DNA that is wound nearly two times around an octamer of histone proteins. To facilitate DNA‐directed processes in chromatin, it is often necessary to rearrange or to mobilize the nucleosomes. This remodeling of the nucleosomes is achieved by the action of chromatin‐remodeling complexes, which are a family of ATP‐dependent molecular machines. Chromatin‐remodeling factors share a related ATPase subunit and participate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  11
    The power of the (imperfect) palindrome: Sequence‐specific roles of palindromic motifs in gene regulation.Rhea R. Datta & Jens Rister - 2022 - Bioessays 44 (4):2100191.
    In human languages, a palindrome reads the same forward as backward (e.g., ‘madam’). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 999